Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers

Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems.

[1]  Adrian Ankiewicz,et al.  Dissipative solitons : from optics to biology and medicine , 2008 .

[2]  Frank W. Wise,et al.  High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion , 2008 .

[3]  A. V. Luchnikov,et al.  Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers , 1992 .

[4]  S. Sugavanam,et al.  The laminar–turbulent transition in a fibre laser , 2013, Nature Photonics.

[5]  F. Kärtner,et al.  Turbulence in mode-locked lasers , 1999 .

[6]  Cristina Masoller,et al.  Spatiotemporal dynamics in the coherence collapsed regime of semiconductor lasers with optical feedback. , 1997, Chaos.

[7]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. , 2007, Optics letters.

[8]  Yuri S. Kivshar,et al.  Dark optical solitons: physics and applications , 1998 .

[9]  J. Travers,et al.  Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers. , 2014, Optics letters.

[10]  Pierre Suret,et al.  Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics , 2014 .

[11]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[12]  Sergey Kobtsev,et al.  Ultra-low repetition rate mode-locked fiber laser with high-energy pulses. , 2008, Optics express.

[13]  P. Russell,et al.  Multistability and spontaneous breaking in pulse-shape symmetry in fiber ring cavities. , 2014, Optics express.

[14]  S. Babin,et al.  270-km ultralong Raman fiber laser. , 2009, Physical review letters.

[15]  Y. Q. Xu,et al.  Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. , 2012, Physical review letters.

[16]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[17]  L. Gelens,et al.  Dynamics of one-dimensional Kerr cavity solitons. , 2013, Optics express.

[18]  A. Scott Encyclopedia of nonlinear science , 2006 .

[19]  Sergey Kobtsev,et al.  Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. , 2009, Optics express.

[20]  P. Grelu,et al.  Rains of solitons in a fiber laser. , 2009, Optics express.

[21]  D. Barkley,et al.  The Onset of Turbulence in Pipe Flow , 2011, Science.

[22]  Neil G. R. Broderick,et al.  Observation of soliton explosions in a passively mode-locked fiber laser , 2014, 1409.8373.

[23]  Y. Silberberg,et al.  Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. , 1997, Optics letters.

[24]  Günter Steinmeyer,et al.  Rogue events in the group velocity horizon , 2012, Scientific Reports.

[25]  A. Newell,et al.  Turbulent transfer of energy by radiating pulses. , 2009, Physical review letters.

[26]  D. Y. Tang,et al.  Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser , 2006 .

[27]  Rick Trebino,et al.  Single-shot measurement of the complete temporal intensity and phase of supercontinuum , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[28]  I. Zolotovskii,et al.  Multisoliton complexes in fiber lasers , 2014 .

[29]  J. Javaloyes,et al.  Topological solitons as addressable phase bits in a driven laser , 2014, Nature Communications.

[30]  S. Coen,et al.  Ultraweak long-range interactions of solitons observed over astronomical distances , 2013, Nature Photonics.

[31]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser. , 2006, Optics express.

[32]  Lin Zhang,et al.  Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation , 2012 .

[33]  S. Balle,et al.  Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays , 2014, Nature Photonics.

[34]  H. Laborit,et al.  [Experimental study]. , 1958, Bulletin mensuel - Societe de medecine militaire francaise.

[35]  E. Lavernia,et al.  An experimental investigation , 1992, Metallurgical and Materials Transactions A.

[36]  Sergey Kobtsev,et al.  Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation. , 2012, Optics express.

[37]  K. Goda,et al.  Dispersive Fourier transformation for fast continuous single-shot measurements , 2013, Nature Photonics.

[38]  Bahram Jalali,et al.  Fluctuations and correlations in modulation instability , 2012, Nature Photonics.

[39]  C. Lévi-Strauss,et al.  Experimental investigation , 2013 .

[40]  P. Grelu,et al.  Soliton rains in a fiber laser: An experimental study , 2010 .

[41]  D V Skryabin,et al.  Soliton interaction mediated by cascaded four wave mixing with dispersive waves. , 2013, Optics express.

[42]  F. Mitschke,et al.  Experimental observation of temporal soliton molecules. , 2005, Physical review letters.

[43]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[44]  Miro Erkintalo,et al.  Raman rogue waves in a partially mode-locked fiber laser. , 2014, Optics letters.

[45]  Sergey Kobtsev,et al.  Fiber lasers mode-locked due to nonlinear polarization evolution: Golden mean of cavity length , 2011 .

[46]  Caroline Lecaplain,et al.  Rogue waves among noiselike-pulse laser emission: An experimental investigation , 2014 .

[47]  Marko Wagner,et al.  Transverse Patterns In Nonlinear Optical Resonators , 2016 .

[48]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[49]  Rick Trebino The Measurement of Ultrashort Laser Pulses , 2005 .

[50]  Miro Erkintalo,et al.  Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers. , 2013, Optics letters.

[51]  J. Soto-Crespo,et al.  Experimental evidence for soliton explosions. , 2002, Physical review letters.

[52]  D. Shen,et al.  Dark soliton fiber lasers. , 2014, Optics express.

[53]  P. Grelu,et al.  Temporal soliton >molecules> in mode-locked lasers: Collisions, pulsations, and vibrations , 2008 .

[54]  S. Wabnitz Optical turbulence in fiber lasers. , 2014, Optics letters.

[55]  Sergei K. Turitsyn,et al.  Mode-locked fiber lasers with significant variability of generation regimes , 2014 .

[56]  P. Grelu,et al.  Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. , 2012, Physical review letters.

[57]  S K Turitsyn,et al.  Regeneration limit of classical Shannon capacity. , 2014, Nature communications.

[58]  F. Lederer,et al.  Multi-soliton complexes in mode-locked fiber lasers , 2011 .

[59]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .