Minimum-link watchman tours

We consider the problem of computing a watchman route in a polygon with holes. We show that the problem of finding a minimum-link watchman route is NP-complete, even if the holes are all convex. The proof is based on showing that the related problem of finding a minimum-link tour on a set of points in the plane is NP-complete. We provide a provably good approximation algorithm that achieves an approximation factor of O(log n ).

[1]  Xuehou Tan,et al.  Fast computation of shortest watchman routes in simple polygons , 2001, Inf. Process. Lett..

[2]  D. T. Lee,et al.  Finding an Approximate Minimum-Link Visibility Path Inside a Simple Polygon , 1995, Inf. Process. Lett..

[3]  Svante Carlsson,et al.  Finding the Shortest Watchman Route in a Simple Polygon , 1993, ISAAC.

[4]  Bengt J. Nilsson,et al.  Concerning the Time Bounds of Existing Shortest Watchman Route Algorithms , 1997, FCT.

[5]  David M. Mount,et al.  An output sensitive algorithm for computing visibility graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[6]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[7]  Joseph S. B. Mitchell,et al.  Approximation algorithms for geometric tour and network design problems (extended abstract) , 1995, SCG '95.

[8]  Simeon C. Ntafos,et al.  Optimum watchman routes , 1986, SCG '86.

[9]  Tomio Hirata,et al.  An incremental algorithm for constructing shortest watchman routes , 1993, Int. J. Comput. Geom. Appl..

[10]  Nimrod Megiddo,et al.  On the complexity of locating linear facilities in the plane , 1982, Oper. Res. Lett..

[11]  XUEHOU TAN,et al.  Corrigendum to "An Incremental Algorithm for Constructing Shortest Watchman Routes" , 1999, Int. J. Comput. Geom. Appl..

[12]  Wei-Pand Chin,et al.  Shortest watchman routes in simple polygons , 1990, Discret. Comput. Geom..

[13]  D. T. Lee,et al.  Minimal Link Visibility Paths Inside a Simple Polygon , 1993, Comput. Geom..