Spectral Algorithms

Spectral methods refer to the use of eigenvalues, eigenvectors, singular values, and singular vectors. They are widely used in Engineering, Applied Mathematics, and Statistics. More recently, spectral methods have found numerous applications in Computer Science to “discrete” as well as “continuous” problems. This monograph describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. In the first part of the monograph, we present applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning, and clustering. The second part of the monograph is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on “sampling on the fly” from massive matrices. Good estimates of singular values and low-rank approximations of the whole matrix can be provably derived from a sample. Our main emphasis in the second part of the monograph is to present these sampling methods with rigorous error bounds. We also present recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.

[1]  Anna R. Karlin,et al.  Spectral analysis of data , 2001, STOC '01.

[2]  Sanjeev Arora,et al.  Learning mixtures of arbitrary gaussians , 2001, STOC '01.

[3]  R. Bhatia Matrix Analysis , 1996 .

[4]  Santosh S. Vempala,et al.  A spectral algorithm for learning mixtures of distributions , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[5]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[6]  Van H. Vu,et al.  Spectral norm of random matrices , 2005, STOC '05.

[7]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[8]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[9]  Shang-Hua Teng,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[10]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[11]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[14]  Claire Mathieu,et al.  A Randomized Approximation Scheme for Metric MAX-CUT , 2001, J. Comput. Syst. Sci..

[15]  Prabhakar Raghavan,et al.  Computing on data streams , 1999, External Memory Algorithms.

[16]  Alan M. Frieze,et al.  Clustering Large Graphs via the Singular Value Decomposition , 2004, Machine Learning.

[17]  Anupam Gupta,et al.  An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .

[18]  Frank McSherry,et al.  Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[19]  Piotr Indyk,et al.  Approximate clustering via core-sets , 2002, STOC '02.

[20]  Peter Frankl,et al.  The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.

[21]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[22]  Jon M. Kleinberg,et al.  On learning mixtures of heavy-tailed distributions , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[23]  Marek Karpinski,et al.  Approximation schemes for Metric Bisection and partitioning , 2004, SODA '04.

[24]  Rafail Ostrovsky,et al.  Polynomial time approximation schemes for geometric k-clustering , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[25]  Santosh S. Vempala,et al.  On clusterings: Good, bad and spectral , 2004, JACM.

[26]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[27]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[28]  Petros Drineas,et al.  Fast Monte-Carlo algorithms for approximate matrix multiplication , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[29]  Wenceslas Fernandez de la Vega,et al.  MAX-CUT has a randomized approximation scheme in dense graphs , 1996, Random Struct. Algorithms.

[30]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[31]  D. Spielman,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[32]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[33]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..

[34]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[35]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[36]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[37]  S. Charles Brubaker,et al.  Robust PCA and clustering in noisy mixtures , 2009, SODA.

[38]  Santosh S. Vempala,et al.  Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.

[39]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[40]  Susan T. Dumais,et al.  Improving the retrieval of information from external sources , 1991 .

[41]  Noga Alon,et al.  Random sampling and approximation of MAX-CSP problems , 2002, STOC '02.

[42]  Sudipto Guha,et al.  A constant-factor approximation algorithm for the k-median problem (extended abstract) , 1999, STOC '99.

[43]  Alan M. Frieze,et al.  Clustering in large graphs and matrices , 1999, SODA '99.

[44]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[45]  Nimrod Megiddo,et al.  On the complexity of locating linear facilities in the plane , 1982, Oper. Res. Lett..

[46]  Jonathan A. Kelner Spectral partitioning, eigenvalue bounds, and circle packings for graphs of bounded genus , 2004, STOC '04.

[47]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .

[48]  Santosh S. Vempala,et al.  A divide-and-merge methodology for clustering , 2005, PODS '05.

[49]  Anirban Dasgupta,et al.  Spectral clustering with limited independence , 2007, SODA '07.

[50]  Santosh S. Vempala,et al.  Isotropic PCA and Affine-Invariant Clustering , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[51]  Alan M. Frieze,et al.  The regularity lemma and approximation schemes for dense problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[52]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[53]  Marek Karpinski,et al.  Approximation schemes for clustering problems , 2003, STOC '03.

[54]  Dimitris Achlioptas,et al.  Fast computation of low-rank matrix approximations , 2007, JACM.

[55]  Sanjoy Dasgupta,et al.  Learning mixtures of Gaussians , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[56]  Satish Rao,et al.  Learning Mixtures of Product Distributions Using Correlations and Independence , 2008, COLT.

[57]  Sariel Har-Peled,et al.  Projective clustering in high dimensions using core-sets , 2002, SCG '02.

[58]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[59]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[60]  Sanjoy Dasgupta,et al.  A Two-Round Variant of EM for Gaussian Mixtures , 2000, UAI.

[61]  Petros Drineas,et al.  Pass efficient algorithms for approximating large matrices , 2003, SODA '03.

[62]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[63]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[64]  Satish Rao,et al.  Beyond Gaussians: Spectral Methods for Learning Mixtures of Heavy-Tailed Distributions , 2008, COLT.

[65]  Jon Feldman,et al.  PAC Learning Axis-Aligned Mixtures of Gaussians with No Separation Assumption , 2006, COLT.

[66]  Santosh S. Vempala,et al.  The geometry of logconcave functions and sampling algorithms , 2007, Random Struct. Algorithms.

[67]  Susan T. Dumais,et al.  Using latent semantic analysis to improve information retrieval , 1988, CHI 1988.

[68]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[69]  Dimitris Achlioptas,et al.  On Spectral Learning of Mixtures of Distributions , 2005, COLT.

[70]  Santosh S. Vempala,et al.  Tensor decomposition and approximation schemes for constraint satisfaction problems , 2005, STOC '05.

[71]  S. Vempala,et al.  The geometry of logconcave functions and sampling algorithms , 2007 .

[72]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[73]  Noga Alon,et al.  Finding a large hidden clique in a random graph , 1998, SODA '98.

[74]  Santosh S. Vempala,et al.  A spectral algorithm for learning mixture models , 2004, J. Comput. Syst. Sci..

[75]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[76]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[77]  W. Vega MAX-CUT has a randomized approximation scheme in dense graphs , 1996, Random Struct. Algorithms.

[78]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[79]  Marek Karpinski,et al.  Polynomial time approximation schemes for dense instances of NP-hard problems , 1995, STOC '95.

[80]  Piotr Indyk A sublinear time approximation scheme for clustering in metric spaces , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[81]  Sudipto Guha,et al.  A constant-factor approximation algorithm for the k-median problem (extended abstract) , 1999, STOC '99.

[82]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[83]  Santosh S. Vempala,et al.  Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.

[84]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices III: Computing a Compressed Approximate Matrix Decomposition , 2006, SIAM J. Comput..

[85]  Santosh S. Vempala,et al.  The Spectral Method for General Mixture Models , 2008, SIAM J. Comput..

[86]  Pierre Hansen,et al.  NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.

[87]  Santosh S. Vempala,et al.  Solving convex programs by random walks , 2004, JACM.

[88]  R. Bhatia Matrix factorizations and their perturbations , 1994 .

[89]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[90]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[91]  Prabhakar Raghavan,et al.  Competitive recommendation systems , 2002, STOC '02.