Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor in cutaneous melanoma

[1]  A. Regev,et al.  Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma , 2019, Nature Medicine.

[2]  J. Pearson,et al.  Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets , 2019, Nature Communications.

[3]  D. Schadendorf,et al.  The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. , 2019, Cell reports.

[4]  Mark J Daly,et al.  Burden of unique and low prevalence somatic mutations correlates with cancer survival , 2019, Scientific Reports.

[5]  P. Mundra,et al.  Publisher Correction: Ultraviolet radiation–induced DNA damage is prognostic for outcome in melanoma , 2018, Nature Medicine.

[6]  P. Mundra,et al.  Ultraviolet radiation–induced DNA damage is prognostic for outcome in melanoma , 2018, Nature Medicine.

[7]  J. Flowers,et al.  Origins and geographic diversification of African rice (Oryza glaberrima) , 2018, bioRxiv.

[8]  Steven A Roberts,et al.  ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma , 2018, Nature Communications.

[9]  R. Gelber,et al.  Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis. , 2018, The Lancet. Oncology.

[10]  Chuang Tan,et al.  Universal Patterns of Selection in Cancer and Somatic Tissues , 2018, Cell.

[11]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[12]  G. Getz,et al.  Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors , 2018, Nature Genetics.

[13]  Steven J. M. Jones,et al.  The Immune Landscape of Cancer , 2018, Immunity.

[14]  Thawfeek M. Varusai,et al.  The Reactome Pathway Knowledgebase , 2017, Nucleic Acids Res..

[15]  M. Nielsen,et al.  NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data , 2017, The Journal of Immunology.

[16]  Gene W. Yeo,et al.  A Large-Scale Binding and Functional Map of Human RNA Binding Proteins , 2017, bioRxiv.

[17]  Charles H. Yoon,et al.  An immunogenic personal neoantigen vaccine for patients with melanoma , 2017, Nature.

[18]  Catherine A. Shang,et al.  Whole-genome landscapes of major melanoma subtypes , 2017, Nature.

[19]  A. Butte,et al.  xCell: digitally portraying the tissue cellular heterogeneity landscape , 2017, bioRxiv.

[20]  Erik Larsson,et al.  Recurrent promoter mutations in melanoma are defined by an extended context-specific mutational signature , 2017, bioRxiv.

[21]  R. Halaban,et al.  Spitz nevi and Spitzoid melanomas - Exome sequencing and comparison to conventional melanocytic nevi and melanomas , 2016, Modern Pathology.

[22]  D. Schadendorf,et al.  The protein phosphatase 2A regulatory subunit PR70 is a gonosomal melanoma tumor suppressor gene , 2016, Science Translational Medicine.

[23]  M. Lauss,et al.  Consensus of Melanoma Gene Expression Subtypes Converges on Biological Entities. , 2016, The Journal of investigative dermatology.

[24]  Andrew J. Dunford,et al.  Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias , 2016, Nature Genetics.

[25]  Allison P. Heath,et al.  Toward a Shared Vision for Cancer Genomic Data. , 2016, The New England journal of medicine.

[26]  Stephen R. Piccolo,et al.  A cloud-based workflow to quantify transcript-expression levels in public cancer compendia , 2016, Scientific Reports.

[27]  A. Gonzalez-Perez,et al.  OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations , 2016, Genome Biology.

[28]  G. McArthur,et al.  Targeting metabolic reprogramming as a potential therapeutic strategy in melanoma. , 2016, Pharmacological research.

[29]  Anushi Shah,et al.  Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes , 2016, Nature.

[30]  L. Stein,et al.  The Reactome pathway Knowledgebase , 2015, Nucleic Acids Res..

[31]  M. Daly,et al.  Gender Disparity and Mutation Burden in Metastatic Melanoma. , 2015, Journal of the National Cancer Institute.

[32]  K. Dutton-Regester,et al.  Recurrent inactivating RASA2 mutations in melanoma , 2015, Nature Genetics.

[33]  Radhakrishnan Sabarinathan,et al.  Nucleotide excision repair is impaired by binding of transcription factors to DNA , 2015, Nature.

[34]  S. Gabriel,et al.  Genomic correlates of response to CTLA-4 blockade in metastatic melanoma , 2015, Science.

[35]  Jen Jen Yeh,et al.  Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma , 2015, Nature Genetics.

[36]  Michael J Parker,et al.  Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. , 2015, American journal of human genetics.

[37]  S. Ariyan,et al.  Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas , 2015, Nature Genetics.

[38]  Rezvan Ehsani,et al.  EpiFactors: a comprehensive database of human epigenetic factors and complexes , 2015, Database J. Biol. Databases Curation.

[39]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[40]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[41]  A. Dobrovic,et al.  Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma , 2014, Oncotarget.

[42]  J. Wolchok,et al.  Genetic basis for clinical response to CTLA-4 blockade in melanoma. , 2014, The New England journal of medicine.

[43]  V. Setaluri,et al.  Cyclic AMP (cAMP) signaling in melanocytes and melanoma. , 2014, Archives of biochemistry and biophysics.

[44]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[45]  George Michailidis,et al.  Critical limitations of consensus clustering in class discovery , 2014, Scientific Reports.

[46]  Benjamin Schubert,et al.  OptiType: precision HLA typing from next-generation sequencing data , 2014, Bioinform..

[47]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[48]  B. Bastian The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. , 2014, Annual review of pathology.

[49]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[50]  Rajiv Narayan,et al.  A melanocyte lineage program confers resistance to MAP kinase pathway inhibition , 2013, Nature.

[51]  S. Gabriel,et al.  Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.

[52]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[53]  T. Ohlmann,et al.  The role of the DEAD‐box RNA helicase DDX3 in mRNA metabolism , 2013, Wiley interdisciplinary reviews. RNA.

[54]  J. Coebergh,et al.  Sex is an independent prognostic indicator for survival and relapse/progression-free survival in metastasized stage III to IV melanoma: a pooled analysis of five European organisation for research and treatment of cancer randomized controlled trials. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[55]  C. Cruciat,et al.  RNA Helicase DDX3 Is a Regulatory Subunit of Casein Kinase 1 in Wnt–β-Catenin Signaling , 2013, Science.

[56]  David Z. Chen,et al.  Architecture of the human regulatory network derived from ENCODE data , 2012, Nature.

[57]  Matthew B. Callaway,et al.  MuSiC: Identifying mutational significance in cancer genomes , 2012, Genome research.

[58]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[59]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[60]  Matthew J. Davis,et al.  Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma , 2012, Nature Genetics.

[61]  J. Coebergh,et al.  Superior outcome of women with stage I/II cutaneous melanoma: pooled analysis of four European Organisation for Research and Treatment of Cancer phase III trials. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[62]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[63]  G. Getz,et al.  Accurate estimation of homologue-specific DNA concentration-ratios in cancer samples allows long-range haplotyping , 2011 .

[64]  Syed Haider,et al.  International Cancer Genome Consortium Data Portal—a one-stop shop for cancer genomics data , 2011, Database J. Biol. Databases Curation.

[65]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[66]  Renaud Gaujoux,et al.  A flexible R package for nonnegative matrix factorization , 2010, BMC Bioinformatics.

[67]  Matthew D. Wilkerson,et al.  ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking , 2010, Bioinform..

[68]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[69]  D. Pinkel,et al.  Somatic activation of KIT in distinct subtypes of melanoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[70]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  E. Rajpert-De Meyts,et al.  The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. , 2004, Human molecular genetics.

[72]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[73]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[74]  W. Goggins,et al.  The transformation rate of moles (melanocytic nevi) into cutaneous melanoma: a population-based estimate. , 2003, Archives of dermatology.

[75]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[76]  C. Stratakis,et al.  Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. , 2001, The Journal of clinical endocrinology and metabolism.

[77]  D. Brash UV Signature Mutations , 2015, Photochemistry and photobiology.

[78]  Trevor J Pugh,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[79]  A. McKenna,et al.  The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. , 2014, Cancer discovery.

[80]  Melissa C. Greven,et al.  An integrated encyclopedia of DNA elements in the human genome , 2014 .

[81]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.