Thermographic phosphors for thermometry: A survey of combustion applications

Temperature is a fundamental thermodynamic parameter used to describe physical, chemical and biological processes. In combustion as in many other applications, knowledge about temperature plays a substantial role in helping to maintain an efficient and clean environment Being able to measure temperature accurately in combustion and in fire-related applications is important for giving a better understanding of heat transfer phenomena and improving existing models. In the present review paper a method based on the spectroscopy of inorganic luminescent materials is described and exemplified in experiments related to combustion. The method involves the use of thermographic phosphors which enable remote temperature diagnostics to be performed with a high degree of sensitivity and accuracy. The technique is superior to those based on thermocouples and pyrometry, particularly in the vicinity of flames and when the measured surface is subjected to random movements. Several phosphor materials suitable for temperature probing are described. The application of thermographic phosphors to temperature measurements in one-point and in two-dimensions in flame spread scenarios, and in pyrolysis experiments involving different construction materials and polymers are described. Many thermographic phosphors have the property of being insensitive to variations in pressure up to 1 GPa. This property extends the use and development of thermographic thermometry to other domains, such as internal combustion engines. The temperature has been measured in a point and in two-dimensions inside the combustion chamber. The complex procedures required to implement the use of thermocouples on moving objects inside an engine make thermocouples an expensive choice. It also limits the possibilities of altering the measurement locations and thereby also complicating the investigation of different engine geometries and components. Thermographic phosphors have also been employed in gas turbine applications. Temperature probing in the afterburner of a full-size aircraft engine is described with the aim to study the effects of various engine loads on the wall temperature. Furthermore, the application of thermographic phosphors to study the temperature of droplets in relation to sprays is described. In spray dynamics, temperature is a crucial parameter for gaining an understanding of atomisation, evaporation and heat convection from the surrounding gases. Finally the application of thermographic phosphors for gas temperature measurement by seeding the particles into a gas flow is described together with the challenges associated with seeding the particles for in-situ flame measurements. (C) 2010 Published by Elsevier Ltd. (Less)

[1]  Jan B. C. Pettersson,et al.  FAST PYROLYSIS OF THE MAIN COMPONENTS OF BIRCH WOOD , 2004 .

[2]  Richard R. Steeper,et al.  Characterization of Combustion, Piston Temperatures, Fuel Sprays, and Fuel-Air Mixing in a DISI Optical Engine , 2000 .

[3]  P. Childs,et al.  Review of temperature measurement , 2000 .

[4]  Yuji Hasemi,et al.  Surface temperature at ignition of wooden based slabs , 1996 .

[5]  T. Kadota,et al.  Visualization of Diesel Spray by Laser Sheet Method , 1994 .

[6]  B. W. Noel,et al.  Evaluating Thermographic Phosphors in an Operating Turbine Engine , 1991 .

[7]  S. Wade,et al.  Fluorescence intensity ratio technique for optical fiber point temperature sensing , 2003 .

[8]  KoHse-HoingHaus Applied Combustion Diagnostics , 2002 .

[9]  H. G. Drickamer,et al.  High-pressure optical studies of doped alkali halides. I. Peak shifts and peak shape changes , 1976 .

[10]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[11]  Lynn A. Melton,et al.  Vapor/Liquid Visualization for Fuel Sprays , 1985 .

[12]  K. Ohno,et al.  Bright green phosphor, Y/sub 3/Al/sub 5-x/Ga/sub x/O/sub 12/:Tb, for projection CRT , 1987 .

[13]  Jonas Johansson,et al.  Airborne chemistry coupled to Raman spectroscopy. , 2003, Analytical chemistry.

[14]  A. Dreizler,et al.  Spray thermometry using thermographic phosphors , 2006 .

[15]  Zhang,et al.  Temperature dependences of fluorescence lifetimes in Cr3+-doped insulating crystals. , 1993, Physical review. B, Condensed matter.

[16]  Kenneth T. V. Grattan,et al.  Infrared fluorescence ‘‘decay‐time’’ temperature sensor , 1985 .

[17]  M. Grønli,et al.  A theoretical and experimental study of the thermal degradation of biomass , 1996 .

[18]  G. Gillies,et al.  Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77°C , 2003 .

[19]  Fotios Sidiroglou,et al.  Effects of high-temperature heat treatment on Nd3+-doped optical fibers for use in fluorescence intensity ratio based temperature sensing , 2003 .

[20]  Yiguang Ju,et al.  A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb, Er upconversion nanophosphors , 2009, Nanotechnology.

[21]  A. Dreizler,et al.  Two-dimensional thermographic phosphor thermometry using a CMOS high speed camera system , 2009 .

[22]  J. W. Wang,et al.  Luminescence of BAM under high pressure: the Eu2+ sites , 2007 .

[23]  Marcus Aldén,et al.  Combustion at the focus: laser diagnostics and control , 2005 .

[24]  M. Versluis,et al.  Two-Dimensional Two-Phase Water Detection Using a Tunable Excimer Laser , 1998 .

[25]  H. Moos,et al.  MULTIPHONON ORBIT-LATTICE RELAXATION OF EXCITED STATES OF RARE-EARTH IONS IN CRYSTALS. , 1968 .

[26]  M. Aldén,et al.  Temperature measurements of single droplets by use of laser-induced phosphorescence. , 2004, Applied optics.

[27]  H. Ishizawa,et al.  Fibre-optic thermometer using sensor materials with long fluorescence lifetime , 2004 .

[28]  S. Basu,et al.  Improved zinc oxide film for gas sensor applications , 2002 .

[29]  A. Omrane,et al.  Heat-transfer distribution for an impinging laminar flame jet to a flat plate , 2008 .

[30]  P. Petersson,et al.  Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors , 2008 .

[31]  M. Riethmuller,et al.  Rainbow Interferometry with Wire Diffraction for Simultaneous Measurement of Droplet Temperature, Size and Velocity , 1997 .

[32]  Y. K. Yoo,et al.  Spherical BaMgAl10 O 17 : Eu2 + Phosphor Prepared by Aerosol Pyrolysis Technique for PDP Applications , 2001 .

[33]  M. Lebouché,et al.  Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence , 2000 .

[34]  Lee C. Bradley,et al.  A Temperature‐Sensitive Phosphor Used to Measure Surface Temperatures in Aerodynamics , 1953 .

[35]  R. R. Sholes,et al.  Fluorescent decay thermometer with biological applications , 1980 .

[36]  M. Aldén,et al.  Visualization of Biomass Pyrolysis and Temperature Imaging in a Heated-Grid Reactor , 2009 .

[37]  Stephen E. Derenzo,et al.  Temperature dependence of the fast, near-band-edge scintillation from CuI, HgI2, PbI2, ZnO:Ga and CdS:In , 2001 .

[38]  Volker Sick,et al.  Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone , 1996 .

[39]  Mark A. Thomas,et al.  High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y/sub 2/O/sub 3/:Eu and YAG:Tb thermographic phosphors , 1993 .

[40]  A. Heyes,et al.  The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications , 2000 .

[41]  J C McDaniel,et al.  Surface temperature imaging below 300 K using La(2)O(2)S:Eu. , 1994, Applied optics.

[42]  Michael V Berry,et al.  Of flying frogs and levitrons , 1997 .

[43]  P. Massoli,et al.  Temperature and size of single transparent droplets by light scattering in the forward and rainbow regions. , 1993, Applied optics.

[44]  S. W. Allison,et al.  Depth-Selective Diagnostics of Thermal Barrier Coatings Incorporating Thermographic Phosphors , 2003 .

[45]  M. Cates,et al.  Applications of pulsed-laser techniques and thermographic phosphors to dynamic thermometry of rotating surfaces , 1985 .

[46]  Wei Chen,et al.  Nanoparticle luminescence thermometry , 2002 .

[47]  M. Richter,et al.  Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry , 2009 .

[48]  M. Aldén,et al.  2D-temperature imaging of single droplets and sprays using thermographic phosphors , 2004 .

[49]  S. Szwarnowski A thermometer for measuring temperatures in the presence of electromagnetic fields. , 1983, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[50]  J. Michael Ramsey,et al.  Detection of single Rhodamine 6G molecules in levitated microdroplets , 1993 .

[51]  Ian P. McClean,et al.  Comparison between thin film and bonded powder phosphors for thermographic sensing in gas turbine engines , 2000, IEEE Trans. Instrum. Meas..

[52]  H. Seyfried,et al.  Laser-induced Phosphorescence for Surface Thermometry in the Afterburner of an Aircraft Engine , 2007 .

[53]  A. Yamada,et al.  Ingan-based light-emitting diodes fabricated with transparent Ga-doped ZnO as ohmic p-contact , 2004 .

[54]  Andrew L. Heyes,et al.  Oxygen quenching of phosphorescence from thermographic phosphors , 2003 .

[55]  Y. Qiang,et al.  Cathodoluminescence from a device of carbon nanotube-field emission display with ZnO nanocluster phosphor , 2007 .

[56]  Kenneth T. V. Grattan,et al.  Characteristics of a high-temperature fibre-optic sensor probe , 1998 .

[57]  K. Tobin,et al.  High-temperature phosphor thermometry of rotating turbine blades , 1990 .

[58]  C. Blasi,et al.  Mathematical model for the nonsteady decomposition of intumescent coatings , 2001 .

[59]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[60]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[61]  L. Thorington Temperature Dependence of the Emission of an Improved Manganese-Activated Magnesium Germanate Phosphor , 1950 .

[62]  Kenneth T. V. Grattan,et al.  Fluorescence decay characteristic of Tm-doped YAG crystal fiber for sensor applications, investigated from room temperature to 1400/spl deg/C , 2003 .

[63]  C. R. Stone,et al.  Temperature and Heat Flux Measurements in a Spark Ignition Engine , 2000 .

[64]  Mertig,et al.  Electron-phonon coupling in the rare-earth metals. , 1990, Physical review. B, Condensed matter.

[65]  Bengt Johansson,et al.  Cycle Resolved Wall Temperature Measurements Using Laser-Induced Phosphorescence in an HCCI Engine , 2005 .

[66]  B. Atakan,et al.  Sol–gel deposition of multiply doped thermographic phosphor coatings Al2O3:(Cr3+, M3+) (M = Dy, Tm) for wide range surface temperature measurement application , 2010 .

[67]  Margaret A. K. Ryan,et al.  Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell , 2006 .

[68]  C. Struck,et al.  Eu+35D Resonance Quenching to the Charge‐Transfer States in Y2O2S, La2O2S, and LaOCl , 1970 .

[69]  Lynn A. Melton,et al.  Two-Dimensional Gas-Phase Temperature Measurements Using Fluorescence Lifetime Imaging , 1996 .

[70]  Development of a fiber-optic probe for thermographic phosphor measurements in turbine engines , 1995 .

[71]  R. Hanson,et al.  Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence. , 1997, Optics letters.

[72]  Kenneth T. V. Grattan,et al.  Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C , 2001 .

[73]  Marcus Aldén,et al.  Investigations of blue emitting phosphors for thermometry , 2008 .

[74]  Roland H. Krauss,et al.  Digital Strain and Temperature Imaging Technique , 1999 .

[75]  Mingchun Luo,et al.  Effects of Radiation on Temperature Measurement in a Fire Environment , 1997 .

[76]  Marcus Aldén,et al.  Two-dimensional surface temperature measurements of burning materials , 2002 .

[77]  Bray,et al.  High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12. , 1995, Physical review. B, Condensed matter.

[78]  Temperature measurement of a curved surface using thermographic phosphors , 1995 .

[79]  Timothy J. Bencic,et al.  Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors , 2013 .

[80]  Arthur H. Lefebvre,et al.  The Role of Fuel Preparation in Low-Emission Combustion , 1995 .

[81]  K. Okuyama,et al.  Photoluminescence characteristics of YAG:Tb phosphor particles with spherical morphology and non-aggregation , 1999 .

[82]  K. Choy,et al.  Phosphor thermometry for high temperature gas turbine applications , 1999, ICIASF 99. 18th International Congress on Instrumentation in Aerospace Simulation Facilities. Record (Cat. No.99CH37025).

[83]  J. Collins,et al.  Temperature and energy gap dependence of energy transfer between rare-earth ions in solids , 1996 .

[84]  M. Lebouché,et al.  Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence , 2001 .

[85]  J. S. T'ien,et al.  A theory of flame spread over a solid fuel including finite-rate chemical kinetics , 1979 .

[86]  B. Lubsandorzhiev,et al.  The Quest for the Ideal Scintillator for Hybrid Phototubes , 2008, IEEE Transactions on Nuclear Science.

[87]  Kazuie Nishiwaki,et al.  Internal-combustion engine heat transfer , 1987 .

[88]  G. Kemeny,et al.  Activator Center in Magnesium Fluorogermanate Phosphors , 1960 .

[89]  Fulvio Scarano,et al.  Iterative multigrid approach in PIV image processing with discrete window offset , 1999 .

[90]  H. G. Drickamer,et al.  High pressure studies of luminescence efficiency and lifetime in La2O2S:Eu and Y2O2S:Eu , 1980 .

[91]  B. Johansson,et al.  Two-dimensional gas-phase temperature measurements using phosphor thermometry , 2007 .

[92]  S. Furuhama,et al.  MEASUREMENT OF THE INSTANTANEOUS SURFACE TEMPERATURE AND HEAT LOSS OF GASOLINE ENGINE COMBUSTION CHAMBER , 1984 .

[93]  Roger P. Worthen,et al.  Measurement of Valve Temperatures and Strain in a Firing Engine , 1986 .

[94]  L. Melton,et al.  Spectrally separated fluorescence emissions for diesel fuel droplets and vapor. , 1983, Applied optics.

[95]  L. P. Goss,et al.  Surface thermometry by laser-induced fluorescence , 1989 .

[96]  E. Welter,et al.  Acoustically levitated droplets — a new tool for micro and trace analysis , 1997 .

[97]  L. Armstrong,et al.  Theoretical analysis of the phase shift measurement of lifetimes using monochromatic light , 1975 .

[98]  E. Brandt Levitation in Physics , 1989, Science.

[99]  Gerhard Woschni,et al.  DETERMINATION OF LOCAL HEAT TRANSFER COEFFICIENTS AT THE PISTON OF A HIGH SPEED DIESEL ENGINE BY EVALUATION OF MEASURED TEMPERATURE DISTRIBUTION , 1979 .

[100]  Marcus Aldén,et al.  Optical Diagnostics for Characterization of a Full-Size Fighter-Jet Afterburner , 2005 .

[101]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .

[102]  Sune Svanberg,et al.  Natural Radiative Lifetimes and Stark-Shift Parameters in the 4p2 Configuration in Ca I , 1984 .

[103]  R. Ballew,et al.  An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays , 1989 .

[104]  L. Melton,et al.  Fluorescence methods for determination of temperature in fuel sprays. , 1985, Applied optics.

[105]  A. Bugos,et al.  Emission properties of europium-doped lanthanum and lutetium orthophosphate crystals for use in high temperature sensor applications , 1989, Proceedings. IEEE Energy and Information Technologies in the Southeast'.

[106]  C. K. Jayasankar,et al.  High-pressure luminescence study of Eu3+ in lithium borate glass , 2004 .

[107]  A. Eckbreth Laser Diagnostics for Combustion Temperature and Species , 1988 .

[108]  Kenneth W. Tobin Fiber-sensor design for turbine engines* , 1991, Optics East.

[109]  D. L. Dexter,et al.  Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids , 1970 .

[110]  A. Lefebvre Gas Turbine Combustion , 1983 .

[111]  Bernhard Schartel,et al.  Influence of external heat flux and coating thickness on the thermal insulation properties of two different intumescent coatings using cone calorimeter and numerical analysis , 2003 .

[112]  J. N. De Ris,et al.  Spread of a laminar diffusion flame , 1969 .

[113]  Konstantinos Kontis,et al.  Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications , 2008, Sensors.

[114]  J. Larfeldt,et al.  Modelling and measurements of the pyrolysis of large wood particles , 2000 .

[115]  Wai K. Cheng,et al.  Intake Valve Thermal Behavior During Steady-State and Transient Engine Operation , 1999 .

[116]  M. Aldén,et al.  Intumescent coating surface temperature measurement in a cone calorimeter using laser-induced phosphorescence , 2007 .

[117]  Kevin L. Hoag Measurement and Analysis of the Effect of Wall Temperature on Instantaneous Heat Flux , 1986 .

[118]  M. Riethmuller,et al.  Nonintrusive measurements of temperature and size of single falling raindrops: erratum. , 1995, Applied optics.

[119]  Minking K. Chyu,et al.  Rare‐earth phosphor laser‐induced fluorescence thermal imaging system , 1994 .

[120]  W. Cranton,et al.  Temperature dependent characteristics of La2O2S: Ln [Ln = Eu, Tb] with various Ln concentrations over 5-60 °C , 2009 .

[121]  G. Laufer,et al.  Surface temperature-field imaging with laser-induced thermographic phosphorescence. , 2000, Applied optics.

[122]  L. J. Dowell,et al.  Errors caused by baseline offset and noise in the estimation of exponential lifetimes , 1991 .

[123]  Y. Ju,et al.  Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors , 2007 .

[124]  M. J. Weber,et al.  Multiphonon Relaxation of Rare-Earth Ions in Yttrium Orthoaluminate , 1973 .

[125]  David R. Clarke,et al.  Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry , 2009 .

[126]  Y. Shen,et al.  Effect of pressure and temperature on the lifetime ofCr3+in yttrium aluminum garnet , 1997 .

[127]  T. Samulski,et al.  Photoluminescent thermometry based on europium-activated calcium sulphide. , 1982, Physics in medicine and biology.

[128]  W. Lehmann,et al.  Edge emission of n-type conducting ZnO and CdS , 1966 .

[129]  A. Dreizler,et al.  Characterization of manganese-activated magnesium fluorogermanate with regards to thermographic phosphor thermometry , 2008 .

[130]  Hongwei Song,et al.  The Relationships between UV Emission and Green Emission in ZnO Phosphor , 2006 .

[131]  Sami D. Alaruri,et al.  Mapping the surface temperature of ceramic and superalloy turbine engine components using laser-induced fluorescence of thermographic phosphor , 1999 .

[132]  M. Richter,et al.  Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence. , 2008, Optics letters.

[133]  A. C. Alkidas Intake-valve temperature and the factors affecting it , 1997 .

[134]  L. Melton,et al.  Measurement of internal circulation in droplets using laser-induced fluorescence. , 1990, Applied optics.

[135]  G. Bizarri,et al.  On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects , 2005 .

[136]  J. Y. Sohn,et al.  Photoluminescence of ZnO:Ga Thin Films Fabricated by Pulsed Laser Deposition Technique , 2004 .

[137]  A. Heyes,et al.  Two-colour phosphor thermometry for surface temperature measurement , 2006 .

[138]  Kristin K. Sharman,et al.  Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes. , 1999, Analytical chemistry.

[139]  Hidetoshi Takamatsu,et al.  Piston temperature measurement method for high-speed gasoline engines , 1999 .

[140]  J. Pettersson,et al.  Optical and Mass Spectrometric Study of the Pyrolysis Gas of Wood Particles , 2003, Applied spectroscopy.

[141]  G. Chadeyron,et al.  Sol–gel based YAG : Tb3+ or Eu3+ phosphors for application in lighting sources , 2005 .

[142]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[143]  T. E. Varitimos,et al.  Optical Intensities of Rare-Earth Ions in Yttrium Orthoaluminate , 1973 .

[144]  Xiankai Sun,et al.  Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by the sol–gel process , 2005 .

[145]  E. Degerman,et al.  Airborne cell analysis. , 2000, Analytical chemistry.

[146]  S. Svanberg,et al.  Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications , 1992 .

[147]  Andrew L. Heyes,et al.  Thermographic phosphor thermometry for film cooling studies in gas turbine combustors , 2003 .

[148]  Robert W. Burrahm,et al.  Development of a piston temperature telemetry system , 1992 .

[149]  D. C. Kincaid,et al.  A Water Droplet Evaporation and Temperature Model , 1989 .

[150]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[151]  N. Nakatani,et al.  Measurement of flow velocity distributions by pulse luminescence method , 1975 .

[152]  Jianguo Zhou,et al.  Template synthesis and luminescent properties of nano-sized YAG:Tb phosphors , 2006 .

[153]  Marcus Aldén,et al.  Surface temperature measurement of flame spread using thermographic phosphors , 2002 .

[154]  Silvestro Crescitelli,et al.  Predictions Of The Dependence On The Opposed Flow Characteristics Of The Flame Spread Rate Over Thick Solid Fuel , 1989 .

[155]  G. Gillies,et al.  Remote thermometry with thermographic phosphors: Instrumentation and applications , 1997 .

[156]  R. Graves,et al.  Phosphor Thermometry for Internal Combustion Engines , 1997 .

[157]  Thomas Laurell,et al.  Screening of nucleation conditions using levitated drops for protein crystallization. , 2003, Analytical chemistry.

[158]  Michael R. Cates,et al.  Solid-state fluorescence above 1000c: application to high temperature laser thermometry , 1990, Other Conferences.

[159]  Staffan Nilsson,et al.  Laser techniques in acoustically levitated micro droplets. , 2004, Lab on a chip.

[160]  Dependency of luminescence properties of Y2O3: Eu on the activator incorporation degree and lattice parameter , 2005 .

[161]  R. L. Vander Wal,et al.  Phosphor Thermometry in Combustion Applications , 1999 .

[162]  C. Struck,et al.  Thermal Quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn Emitting States in La2 O2 S , 1971 .

[163]  A. Benker,et al.  Luminescence properties of nanocrystalline Y2O3:Eu3+ in different host materials , 2001 .

[164]  M. Moszynski,et al.  Timing properties of a ZnO(Ga) scintillator (NE843) , 1975 .

[165]  J. Janicka,et al.  An algorithm for the characterisation of multi-exponential decay curves , 2009 .

[166]  M. Jeong,et al.  Three-dimensional ZnO hybrid nanostructures for oxygen sensing application , 2006 .

[167]  J. Pettersson,et al.  Surface temperature of decomposing construction materials studied by laser‐induced phosphorescence , 2005 .

[168]  Johan Engström,et al.  Demonstration of two-dimensional temperature characterization of valves and transparent piston in a GDI optical engine , 2004 .

[169]  M. Aldén,et al.  Survivability of thermographic phosphors (YAG:Dy) in a combustion environment , 2010 .

[170]  M. J. Weber,et al.  Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y 2 O 3 , 1968 .

[171]  J. Janicka,et al.  Gas compositional and pressure effects on thermographic phosphor thermometry , 2007 .

[172]  D. Koltick,et al.  Evaluation of ZnO(Ga) coatings as alpha particle transducers within a neutron generator , 2002 .