The inexact, inexact perturbed, and quasi-Newton methods are equivalent models
暂无分享,去创建一个
[1] D. Rose,et al. Parameter Selection for Newton-Like Methods Applicable to Nonlinear Partial Differential Equations , 1980 .
[2] Ebrahim M. Kasenally. GMBACK: A Generalised Minimum Backward Error Algorithm for Nonsymmetric Linear Systems , 1995, SIAM J. Sci. Comput..
[3] Ioannis K. Argyros,et al. Advances in the Efficiency of Computational Methods and Applications , 2000 .
[4] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[5] T. Ypma. Local Convergence of Inexact Newton Methods , 1984 .
[6] J. J. Moré,et al. Quasi-Newton Methods, Motivation and Theory , 1974 .
[7] P. Brown. A local convergence theory for combined inexact-Newton/finite-difference projection methods , 1987 .
[8] Valeria Simoncini,et al. Analysis of a Minimum Perturbation Algorithm for Nonsymmetric Linear Systems , 1997 .
[9] D. Rose,et al. Global approximate Newton methods , 1981 .
[10] H. J. Martinezt Z. Paradat. On the Characterization of Q-Superlinear Convergence of Quasi-Newton Interior-Point Methods for Nonlinear Programming , 2003 .
[11] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[12] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[13] Florian A. Potra,et al. Q-superlinear convergence of the iterates in primal-dual interior-point methods , 2001, Math. Program..
[14] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[15] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[16] B. Morini,et al. Inexact Methods: Forcing Terms and Conditioning , 2000 .
[17] Benedetta Morini,et al. Convergence behaviour of inexact Newton methods , 1999, Math. Comput..
[18] P. Deuflhard,et al. Affine Invariant Convergence Theorems for Newton’s Method and Extensions to Related Methods , 1979 .
[19] E. Cătinaş,et al. On the Superlinear Convergence of the Successive Approximations Method , 2002 .
[20] J. J. Moré,et al. A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .
[21] R. D. Murphy,et al. Iterative solution of nonlinear equations , 1994 .
[22] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[23] Werner C. Rheinboldt,et al. Methods for Solving Systems of Nonlinear Equations: Second Edition , 1998 .
[24] Concerning the convergence of inexact Newton methods , 1997 .
[25] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[26] F. Potra,et al. Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem , 1992 .
[27] F. Potra. OnQ-order andR-order of convergence , 1989 .
[28] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[29] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[30] E. CĂTINAŞ,et al. Inexact Perturbed Newton Methods and Applications to a Class of Krylov Solvers , 2001 .
[31] Werner C. Rheinboldt,et al. Methods for solving systems of nonlinear equations , 1987 .