Iterative Quantum Algorithms for Maximum Independent Set: A Tale of Low-Depth Quantum Algorithms

Quantum algorithms have been widely studied in the context of combinatorial optimization problems. While this endeavor can often analytically and practically achieve quadratic speedups, theoretical and numeric studies remain limited, especially compared to the study of classical algorithms. We propose and study a new class of hybrid approaches to quantum optimization, termed Iterative Quantum Algorithms, which in particular generalizes the Recursive Quantum Approximate Optimization Algorithm. This paradigm can incorporate hard problem constraints, which we demonstrate by considering the Maximum Independent Set (MIS) problem. We show that, for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS. We then turn to deeper $p>1$ circuits and other ways to modify the quantum algorithm that can no longer be easily mimicked by classical algorithms, and empirically confirm improved performance. Our work demonstrates the practical importance of incorporating proven classical techniques into more effective hybrid quantum-classical algorithms.

[1]  H. Katzgraber,et al.  Quantum-Informed Recursive Optimization Algorithms , 2023, PRX Quantum.

[2]  Filip B. Maciejewski,et al.  Design and execution of quantum circuits using tens of superconducting qubits and thousands of gates for dense Ising optimization problems , 2023, ArXiv.

[3]  M. Lukin,et al.  Quantum speedup for combinatorial optimization with flat energy landscapes , 2023, 2306.13123.

[4]  Filip B. Maciejewski,et al.  Quantum-enhanced greedy combinatorial optimization solver , 2023, Science advances.

[5]  H. Katzgraber,et al.  Reply to: Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set , 2022, Nature Machine Intelligence.

[6]  Soojoon Lee,et al.  Recursive QAOA outperforms the original QAOA for the MAX-CUT problem on complete graphs , 2022, 2211.15832.

[7]  Salvatore F. E. Oliviero,et al.  On the practical usefulness of the Hardware Efficient Ansatz , 2022, Quantum.

[8]  W. Lechner,et al.  Rydberg-Blockade-Based Parity Quantum Optimization. , 2022, Physical review letters.

[9]  Z. Saleem,et al.  Quantum-classical tradeoffs and multi-controlled quantum gate decompositions in variational algorithms , 2022, 2210.04378.

[10]  Minh Hoai Nguyen,et al.  Quantum optimization with arbitrary connectivity using Rydberg atom arrays , 2022, PRX Quantum.

[11]  Thomas Bäck,et al.  Reinforcement learning assisted recursive QAOA , 2022, EPJ quantum technology.

[12]  E. Farhi,et al.  The QAOA gets stuck starting from a good classical string , 2022, 2207.05089.

[13]  Jaewook Ahn,et al.  Finding the Maximum Independent Sets of Platonic Graphs Using Rydberg Atoms , 2022, PRX Quantum.

[14]  Maria Chiara Angelini,et al.  Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set , 2022, Nature Machine Intelligence.

[15]  E. Moon,et al.  Rydberg quantum wires for maximum independent set problems , 2022, Nature Physics.

[16]  A. Keesling,et al.  Industry applications of neutral-atom quantum computing solving independent set problems , 2022, 2205.08500.

[17]  M. Lukin,et al.  Quantum optimization of maximum independent set using Rydberg atom arrays , 2022, Science.

[18]  Stuart Hadfield,et al.  Bounds on approximating Max kXOR with quantum and classical local algorithms , 2021, Quantum.

[19]  Martin Suchara,et al.  Quantum Local Search with the Quantum Alternating Operator Ansatz , 2021, Quantum.

[20]  H. Katzgraber,et al.  Combinatorial optimization with physics-inspired graph neural networks , 2021, Nature Machine Intelligence.

[21]  T. Hogg,et al.  Analytical framework for quantum alternating operator ansätze , 2021, Quantum Science and Technology.

[22]  Luke Schaeffer,et al.  Classical algorithms for Forrelation , 2021, 2102.06963.

[23]  M. Kliesch,et al.  Training Variational Quantum Algorithms Is NP-Hard. , 2021, Physical review letters.

[24]  S. Bravyi,et al.  Obstacles to Variational Quantum Optimization from Symmetry Protection. , 2020, Physical review letters.

[25]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[26]  P. McMahon,et al.  Expectation values from the single-layer quantum approximate optimization algorithm on Ising problems , 2020, Quantum Science and Technology.

[27]  Robert Koenig,et al.  Hybrid quantum-classical algorithms for approximate graph coloring , 2020, Quantum.

[28]  Martin Suchara,et al.  Approaches to Constrained Quantum Approximate Optimization , 2020, SN Computer Science.

[29]  Dries Sels,et al.  Quantum Sampling Algorithms for Near-Term Devices. , 2020, Physical review letters.

[30]  F. Wilczek,et al.  Quantum Algorithm for Approximating Maximum Independent Sets , 2020, Chinese Physics Letters.

[31]  David Gamarnik,et al.  The Quantum Approximate Optimization Algorithm Needs to See the Whole Graph: Worst Case Examples , 2020, 2005.08747.

[32]  David Gamarnik,et al.  The Quantum Approximate Optimization Algorithm Needs to See the Whole Graph: A Typical Case , 2020, ArXiv.

[33]  Z. Saleem,et al.  Max-independent set and the quantum alternating operator ansatz , 2020 .

[34]  Timothy W. Finin,et al.  Quantum-Assisted Greedy Algorithms , 2019, IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium.

[35]  Leo Zhou,et al.  Computational complexity of the Rydberg blockade in two dimensions , 2018, ArXiv.

[36]  Stuart Hadfield,et al.  Quantum Algorithms for Scientific Computing and Approximate Optimization , 2018, 1805.03265.

[37]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[38]  Guillaume Chapuis,et al.  Efficient Combinatorial Optimization Using Quantum Annealing , 2016, 1801.08653.

[39]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[40]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[41]  Majid Sarrafzadeh,et al.  Theoretical Bound and Practical Analysis of Connected Dominating Set in Ad Hoc and Sensor Networks , 2008, DISC.

[42]  C. Bazgan,et al.  Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness , 2005, Theor. Comput. Sci..

[43]  Koichi Yamazaki,et al.  A note on greedy algorithms for the maximum weighted independent set problem , 2003, Discret. Appl. Math..

[44]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[45]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[46]  Subhash Suri,et al.  Label placement by maximum independent set in rectangles , 1998, CCCG.

[47]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[48]  Jaikumar Radhakrishnan,et al.  Greed is good: Approximating independent sets in sparse and bounded-degree graphs , 1997, Algorithmica.

[49]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[50]  F. Liers,et al.  Enhancing Quantum Algorithms for Maximum Cut via Integer Programming , 2023 .

[51]  Martin Suchara,et al.  Quantum Divide and Conquer for Combinatorial Optimization and Distributed Computing , 2021 .

[52]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[53]  W. Marsden I and J , 2012 .

[54]  D. McMahon Adiabatic Quantum Computation , 2008 .

[55]  Sergiy Butenko,et al.  Maximum independent set and related problems, with applications , 2003 .

[56]  Physical Review Letters 63 , 1989 .