Abstractive Summarization of Voice Communications

Abstract summarization of conversations is a very challenging task that requires full understanding of the dialog turns, their roles and relationships in the conversations. We present an efficient system, derived from a fullyfledged text analysis system that performs the necessary linguistic analysis of turns in conversations and provides useful argumentative labels to build synthetic abstractive summaries of conversations.

[1]  Giuseppe Carenini,et al.  Interpretation and Transformation for Abstracting Conversations , 2010, HLT-NAACL.

[2]  Johanna D. Moore,et al.  AUTOMATIC TOPIC SEGMENTATION AND LABELING IN MULTIPARTY DIALOGUE , 2006, 2006 IEEE Spoken Language Technology Workshop.

[3]  Klaus Zechner,et al.  Automatic Summarization of Open-Domain Multiparty Dialogues in Diverse Genres , 2002, CL.

[4]  Steve Renals,et al.  Detecting Action Items in Meetings , 2008, MLMI.

[5]  Julia Hirschberg,et al.  Identifying Agreement and Disagreement in Conversational Speech: Use of Bayesian Networks to Model Pragmatic Dependencies , 2004, ACL.

[6]  Wessel Kraaij,et al.  Automatic Summarization of Meeting Data: A Feasibility Study , 2005, CLIN.

[7]  Stéphane Marchand-Maillet,et al.  Towards Meeting Information Systems: Meeting Knowledge Management , 2004, ICEIS.

[8]  Theresa Wilson,et al.  Multimodal Subjectivity Analysis of Multiparty Conversation , 2008, EMNLP.

[9]  Johanna D. Moore,et al.  Automatic Decision Detection in Meeting Speech , 2007, MLMI.

[10]  Jean Carletta,et al.  Extractive summarization of meeting recordings , 2005, INTERSPEECH.

[11]  Rodolfo Delmonte Computational Linguistic Text Processing: Logical Form, Semantic Interpretation, Discourse Relations and Question Answering , 2007 .

[12]  Stanley Peters,et al.  Ontology-Based Discourse Understanding for a Persistent Meeting Assistant , 2005, AAAI Spring Symposium: Persistent Assistants: Living and Working with AI.

[13]  Andreas Stolcke,et al.  The ICSI Meeting Corpus , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[14]  Dirk Heylen,et al.  Argument Diagramming of Meeting Conversations , 2005 .

[15]  Johanna D. Moore,et al.  What Decisions Have You Made: Automatic Decision Detection in Conversational Speech , 2007 .

[16]  Inderjeet Mani,et al.  The Challenges of Automatic Summarization , 2000, Computer.

[17]  Dilek Z. Hakkani-Tür,et al.  Clusterrank: a graph based method for meeting summarization , 2009, INTERSPEECH.

[18]  Peter Poller,et al.  Extrinsic summarization evaluation: A decision audit task , 2008, TSLP.

[19]  Andreas Stolcke,et al.  Dialogue act modeling for automatic tagging and recognition of conversational speech , 2000, CL.

[20]  Violeta Seretan,et al.  User Requirements Analysis for Meeting Information Retrieval Based on Query Elicitation , 2007, ACL.

[21]  Mari Ostendorf,et al.  Detection Of Agreement vs. Disagreement In Meetings: Training With Unlabeled Data , 2003, NAACL.

[22]  Dilek Z. Hakkani-Tür,et al.  Packing the meeting summarization knapsack , 2008, INTERSPEECH.

[23]  Fei Liu,et al.  From Extractive to Abstractive Meeting Summaries: Can It Be Done by Sentence Compression? , 2009, ACL.

[24]  Andrei Popescu-Belis,et al.  Machine Learning for Multimodal Interaction , 4th International Workshop, MLMI 2007, Brno, Czech Republic, June 28-30, 2007, Revised Selected Papers , 2008, MLMI.

[25]  Pallotta Vincenzo,et al.  Towards Automatic Dialogue Understanding , 2010 .

[26]  Rodolfo Delmonte,et al.  Computational Linguistic Text Processing – Lexicon, Grammar, Parsing and Anaphora Resolution , 2008 .

[27]  Elizabeth Shriberg,et al.  Automatic dialog act segmentation and classification in multiparty meetings , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[28]  Martin Rajman,et al.  Towards an argumentative coding scheme for annotating meeting dialogue data , 2007 .