Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem

Biodiversity, or the relative abundance of species, measures the persistence of an ecosystem. To better understand its modulation, we analyzed the spatial and temporal dynamics of a synthetic, chemical-mediated ecosystem that consisted of two engineered Escherichia coli populations. Depending on the specific experimental conditions implemented, the dominant interaction between the two populations could be competition for nutrients or predation due to engineered communication. While the two types of interactions resulted in different spatial patterns, they demonstrated a common trend in terms of the modulation of biodiversity. Specifically, biodiversity decreased with increasing cellular motility if the segregation distance between the two populations was comparable to the length scale of the chemical-mediated interaction. Otherwise, biodiversity was insensitive to cellular motility. Our results suggested a simple criterion for predicting the modulation of biodiversity by habitat partitioning and cellular motility in chemical-mediated ecosystems.

[1]  F. Arnold,et al.  Engineering microbial consortia: a new frontier in synthetic biology. , 2008, Trends in biotechnology.

[2]  Jeremy K. Nicholson,et al.  Gut microbiota: a potential new territory for drug targeting , 2008, Nature Reviews Drug Discovery.

[3]  A Hastings,et al.  Spatial heterogeneity and the stability of predator-prey systems. , 1977, Theoretical population biology.

[4]  Mark O. Martin Predatory prokaryotes: an emerging research opportunity. , 2002, Journal of molecular microbiology and biotechnology.

[5]  P. Potin,et al.  New trends in marine chemical ecology , 2006 .

[6]  Maurice W. Sabelis,et al.  Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? , 1988 .

[7]  R. Guerrero,et al.  Comparison of techniques to determine the abundance of predatory bacteria attacking chromatiaceae , 1992 .

[8]  M. Surette,et al.  Communication in bacteria: an ecological and evolutionary perspective , 2006, Nature Reviews Microbiology.

[9]  S. Strom Microbial Ecology of Ocean Biogeochemistry: A Community Perspective , 2008, Science.

[10]  E. Shiner,et al.  Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. , 2005, FEMS microbiology reviews.

[11]  T. Reichenbach,et al.  Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games , 2007, Nature.

[12]  D. Lauffenburger,et al.  Effect of bacterial chemotaxis on dynamics of microbial competition , 1988, Microbial Ecology.

[13]  M. Singer,et al.  Mutations affecting predation ability of the soil bacterium Myxococcus xanthus. , 2005, Microbiology.

[14]  R. Ley,et al.  Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine , 2006, Cell.

[15]  L. Segel,et al.  Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.

[16]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[17]  H. Berg,et al.  Spatio-temporal patterns generated by Salmonella typhimurium. , 1995, Biophysical journal.

[18]  J. P. Grime,et al.  Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges , 2001, Science.

[19]  Mat E. Barnet,et al.  A synthetic Escherichia coli predator–prey ecosystem , 2008, Molecular systems biology.

[20]  A. Hastings Transients: the key to long-term ecological understanding? , 2004, Trends in ecology & evolution.

[21]  M. Feldman,et al.  Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors , 2002, Nature.

[22]  E. Delong,et al.  The Microbial Engines That Drive Earth's Biogeochemical Cycles , 2008, Science.

[23]  James E. Bailey,et al.  Isopropyl-β-d-thiogalactopyranoside influences the metabolism of Escherichia coli , 1992, Applied Microbiology and Biotechnology.

[24]  Peter Chesson,et al.  The interaction between predation and competition , 2008, Nature.

[25]  Martin Fussenegger,et al.  Synthetic ecosystems based on airborne inter- and intrakingdom communication , 2007, Proceedings of the National Academy of Sciences.

[26]  S. Zahler,et al.  Lytic Enzyme Produced by Myxococcus xanthus , 1966, Journal of bacteriology.

[27]  J. Choi,et al.  Defined spatial structure stabilizes a synthetic multispecies bacterial community , 2008, Proceedings of the National Academy of Sciences.

[28]  B. Bohannan,et al.  An ecological perspective on bacterial biodiversity , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  D. Relman,et al.  An ecological and evolutionary perspective on human–microbe mutualism and disease , 2007, Nature.

[30]  E. Jurkevitch Predatory Behaviors in Bacteria — Diversity and Transitions , 2007 .

[31]  M. Ferris Biodiversity of Microbial Life: Foundation of Earth’s Biosphere.Ecology and Applied Microbiology. Edited byJames T Staleyand, Anna‐Louise Reysenbach.New York: Wiley‐Liss. $89.95. xxxiii + 552 p; ill.; index. ISBN: 0–471–25433–9. 2002. , 2002 .

[32]  R. Tollrian,et al.  Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. , 2007, Trends in ecology & evolution.

[33]  Wenying Shou,et al.  Synthetic cooperation in engineered yeast populations , 2007, Proceedings of the National Academy of Sciences.

[34]  Ron Weiss,et al.  Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium , 2007, Proceedings of the National Academy of Sciences.

[35]  B. Kerr,et al.  Big questions, small worlds: microbial model systems in ecology. , 2004, Trends in ecology & evolution.

[36]  John R. Kirby,et al.  Rippling Is a Predatory Behavior in Myxococcus xanthus , 2006, Journal of bacteriology.

[37]  H. Stolp,et al.  Microbial Ecology: Organisms, Habitats, Activities , 1988 .

[38]  K. A. Morehouse,et al.  Bdellovibrio: growth and development during the predatory cycle. , 2006, Current opinion in microbiology.

[39]  David M. Ward,et al.  A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities , 1998, Microbiology and Molecular Biology Reviews.

[40]  A. Stams,et al.  The ecology and biotechnology of sulphate-reducing bacteria , 2008, Nature Reviews Microbiology.

[41]  M. Weissburg,et al.  Ecological Consequences of Chemically Mediated Prey Perception , 2002, Journal of Chemical Ecology.

[42]  D. Tilman THE ECOLOGICAL CONSEQUENCES OF CHANGES IN BIODIVERSITY: A SEARCH FOR GENERAL PRINCIPLES101 , 1999 .

[43]  S. Kjelleberg,et al.  Microbial landscapes: new paths to biofilm research. , 2007, Nature reviews. Microbiology.

[44]  C. Pedrós-Alió,et al.  Predatory prokaryotes: predation and primary consumption evolved in bacteria. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Dykhuizen Santa Rosalia revisited: Why are there so many species of bacteria? , 2004, Antonie van Leeuwenhoek.

[46]  D. Janke Microbial Ecology: Organisms, Habitats, Activities (Cambridge Studies in Ecology), H. Stolp. Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney (1988), 308 S., 50 Abb. Paperback. Preis: £ 12.95/US $ 22.50 , 1989 .

[47]  Robert K. Peet,et al.  The Measurement of Species Diversity , 1974 .

[48]  R. Whittaker,et al.  Allelochemics: chemical interactions between species. , 1971, Science.

[49]  D. Lauffenburger Quantitative studies of bacterial chemotaxis and microbial population dynamics , 1991, Microbial Ecology.