A randomized algorithm for the on-line weighted bipartite matching problem

Abstract We study the on-line minimum weighted bipartite matching problem in arbitrary metric spaces. Here, n not necessary disjoint points of a metric space M are given, and are to be matched on-line with n points of M revealed one by one. The cost of a matching is the sum of the distances of the matched points, and the goal is to find or approximate its minimum. The competitive ratio of the deterministic problem is known to be Θ(n), see (Kalyanasundaram, B., Pruhs, K. in J. Algorithms 14(3):478–488, 1993) and (Khuller, S., et al. in Theor. Comput. Sci. 127(2):255–267, 1994). It was conjectured in (Kalyanasundaram, B., Pruhs, K. in Lecture Notes in Computer Science, vol. 1442, pp. 268–280, 1998) that a randomized algorithm may perform better against an oblivious adversary, namely with an expected competitive ratio Θ(log n). We prove a slightly weaker result by showing a o(log 3n) upper bound on the expected competitive ratio. As an application the same upper bound holds for the notoriously hard fire station problem, where M is the real line, see (Fuchs, B., et al. in Electonic Notes in Discrete Mathematics, vol. 13, 2003) and (Koutsoupias, E., Nanavati, A. in Lecture Notes in Computer Science, vol. 2909, pp. 179–191, 2004).