Tunable Plasmon–Phonon Polaritons in Layered Graphene–Hexagonal Boron Nitride Heterostructures

We use infrared spectroscopy to explore the hybridization of graphene plasmons and hexagonal boron nitride (hBN) phonons in their heterostructures with different compositions. We show that the degree of plasmon–phonon hybridization and the slowing of the light group velocity within the infrared transparency window due to the plasmon–phonon destructive interference are dominated by hBN phonon oscillating strength, which can be tuned by varying the hBN thickness in a layer-by-layer manner. However, the plasmon oscillating strength in metallic graphene governs the magnitude of infrared extinction, which exceeds 6% at around 7 μm in a graphene/hBN/graphene heterostructure due to the strong plasmon dipole–dipole coupling. Our work demonstrates that the infrared optical responses of graphene–hBN heterostructures can be engineered by controlling the coupling strength of plasmon–phonon hybridization and the overall plasmon oscillating strength simultaneously, thus opening the avenue for the light manipulation and...

[1]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[2]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[3]  J. Cox,et al.  Electrically tunable nonlinear plasmonics in graphene nanoislands , 2014, Nature Communications.

[4]  Peter Nordlander,et al.  Plasmon-induced hot carriers in metallic nanoparticles. , 2014, ACS nano.

[5]  H. Atwater,et al.  Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. , 2014, Nano letters.

[6]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[7]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[8]  Wenjuan Zhu,et al.  Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. , 2014, Nano letters.

[9]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[10]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[11]  Xing Zhu,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[12]  F. Guinea,et al.  Tunable phonon-induced transparency in bilayer graphene nanoribbons. , 2013, Nano letters.

[13]  Jun Yan,et al.  Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2014, Nature nanotechnology.

[14]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[15]  Z. Liao,et al.  Graphene plasmon enhanced photoluminescence in ZnO microwires. , 2013, Nanoscale.

[16]  Wenjuan Zhu,et al.  Photocurrent in graphene harnessed by tunable intrinsic plasmons , 2013, Nature Communications.

[17]  Fengnian Xia,et al.  The Interaction of Light and Graphene: Basics, Devices, and Applications , 2013, Proceedings of the IEEE.

[18]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[19]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[20]  L. Martín-Moreno,et al.  Scattering of graphene plasmons by defects in the graphene sheet. , 2013, ACS nano.

[21]  F. Guinea,et al.  Resonant plasmonic effects in periodic graphene antidot arrays , 2012, 1206.2163.

[22]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[23]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[24]  Jingjun Xu,et al.  Tunable terahertz optical antennas based on graphene ring structures , 2012 .

[25]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[26]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[27]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[28]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[29]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[30]  K. Michel,et al.  Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride , 2011 .

[31]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[32]  E. H. Hwang,et al.  Plasmon-phonon coupling in graphene , 2010, 1008.0862.

[33]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[34]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[35]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[36]  S. A. Mikhailov,et al.  Dielectric function and plasmons in graphene , 2009, 0904.4378.

[37]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[38]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[39]  R.S. Tucker,et al.  Slow-light optical buffers: capabilities and fundamental limitations , 2005, Journal of Lightwave Technology.

[40]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[41]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[42]  C. Oshima,et al.  REVIEW ARTICLE: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces , 1997 .

[43]  Harris,et al.  Electromagnetically induced transparency: Propagation dynamics. , 1995, Physical review letters.

[44]  C. H. Perry,et al.  Normal Modes in Hexagonal Boron Nitride , 1966 .

[45]  K. L. Kliewer,et al.  Optical Modes of Vibration in an Ionic Crystal Slab , 1965 .

[46]  M. Tinkham Energy Gap Interpretation of Experiments on Infrared Transmission through Superconducting Films , 1956 .