The Generalized Schur Algorithm and Some Applications

The generalized Schur algorithm is a powerful tool allowing to compute classical decompositions of matrices, such as the Q R and L U factorizations. When applied to matrices with particular structures, the generalized Schur algorithm computes these factorizations with a complexity of one order of magnitude less than that of classical algorithms based on Householder or elementary transformations. In this manuscript, we describe the main features of the generalized Schur algorithm. We show that it helps to prove some theoretical properties of the R factor of the Q R factorization of some structured matrices, such as symmetric positive definite Toeplitz and Sylvester matrices, that can hardly be proven using classical linear algebra tools. Moreover, we propose a fast implementation of the generalized Schur algorithm for computing the rank of Sylvester matrices, arising in a number of applications. Finally, we propose a generalized Schur based algorithm for computing the null-space of polynomial matrices.

[1]  Cornelis Praagman,et al.  A new method for computing a column reduced polynomial matrix , 1988 .

[2]  D. O’Leary,et al.  Implementation of the regularized structured total least squares algorithms for blind image deblurring , 2004 .

[3]  Sabine Van Huffel,et al.  Fast Structured Total Least Squares Algorithm for Solving the Basic Deconvolution Problem , 2000, SIAM J. Matrix Anal. Appl..

[4]  Sabine Van Huffel,et al.  Fast algorithm for solving the Hankel/Toeplitz Structured Total Least Squares problem , 2004, Numerical Algorithms.

[5]  Froilán M. Dopico,et al.  Fiedler Companion Linearizations and the Recovery of Minimal Indices , 2010, SIAM J. Matrix Anal. Appl..

[6]  Michael Stewart,et al.  Cholesky factorization of semidefinite Toeplitz matrices , 1997 .

[7]  J. C. Basilio,et al.  A robust solution of the generalized polynomial Bezout identity , 2004 .

[8]  Sabine Van Huffel,et al.  On the Stability of the Generalized Schur Algorithm , 2000, NAA.

[9]  C. Praagman,et al.  Column reduction of polynomial matrices , 1993 .

[10]  L. Zhi,et al.  A structured rank-revealing method for Sylvester matrix , 2008 .

[11]  E. N. Antoniou,et al.  Numerical computation of minimal polynomial bases: A generalized resultant approach , 2005 .

[12]  Dario Bini,et al.  A Fast Algorithm for Approximate Polynomial GCD Based on Structured Matrix Computations , 2010 .

[13]  Michael A. Stewart,et al.  Stability Issues in the Factorization of Structured Matrices , 1997, SIAM J. Matrix Anal. Appl..

[14]  R. Vandebril,et al.  On the computation of the nullspace of Toeplitz-like matrices , 2008 .

[15]  Richard P. Brent,et al.  A Note on Downdating the Cholesky Factorization , 1987 .

[16]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .

[17]  Paola Boito,et al.  Structured Matrix Based Methods for Approximate Polynomial GCD , 2011 .

[18]  Froilán M. Dopico,et al.  Recovery of Eigenvectors and Minimal Bases of Matrix Polynomials from Generalized Fiedler Linearizations , 2011, SIAM J. Matrix Anal. Appl..

[19]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[20]  P. Dooren,et al.  High performance algorithms for Toeplitz and block Toeplitz matrices , 1996 .

[21]  Ali H. Sayed,et al.  Stabilizing the Generalized Schur Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[22]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[23]  Nicholas J. Higham,et al.  J-Orthogonal Matrices: Properties and Generation , 2003, SIAM Rev..

[24]  Didier Henrion,et al.  An improved Toeplitz algorithm for polynomial matrix null-space computation , 2009, Appl. Math. Comput..