The Discrete Fourier Transform Over Finite Rings with Application to Fast Convolution

Necessary and sufficient conditions for a direct sum of local rings to support a generalized discrete Fourier transform are derived. In particular, these conditions can be applied to any finite ring. The function O(N) defined by Agarwal and Burrus for transforms over ZN is extended to any finite ring R as O(R) and it is shown that R supports a length m discrete Fourier transform if and only if m is a divisor of O(R) This result is applied to the homomorphic images of rings-of algebraic integers.

[1]  R. Tennant Algebra , 1941, Nature.

[2]  I. Niven,et al.  An introduction to the theory of numbers , 1961 .

[3]  Pierre Samuel,et al.  Algebraic theory of numbers , 1971 .

[4]  Peter J. Nicholson,et al.  Algebraic Theory of Finite Fourier Transforms , 1971, Journal of computer and system sciences (Print).

[5]  J. Pollard,et al.  The fast Fourier transform in a finite field , 1971 .

[6]  Charles M. Rader,et al.  Discrete Convolutions via Mersenne Transrorms , 1972, IEEE Transactions on Computers.

[7]  C. Burrus,et al.  Fast Convolution using fermat number transforms with applications to digital filtering , 1974 .

[8]  B. R. McDonald Finite Rings With Identity , 1974 .

[9]  Trieu-Kien Truong,et al.  Complex integer convolutions over a direct sum of Galois fields , 1975, IEEE Trans. Inf. Theory.

[10]  R. E. Bogner,et al.  Introduction to Digital Filtering , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  John D. Lipson The fast Fourier transform its role as an algebraic algorithm , 1976, ACM '76.

[12]  E. Vegh,et al.  Fast complex convolution in finite rings , 1976 .

[13]  Trieu-Kien Truong,et al.  Convolutions over residue classes of quadratic integers , 1976, IEEE Trans. Inf. Theory.

[14]  J. Pollard Implementation of number-theoretic transforms , 1976 .

[15]  E. Dubois,et al.  Convolution using a conjugate symmetry property for the generalized discrete Fourier transform , 1978 .

[16]  K. R. Rao,et al.  Orthogonal Transforms for Digital Signal Processing , 1979, IEEE Transactions on Systems, Man, and Cybernetics.