Decomposition into subspaces preconditioning: abstract framework

Operator preconditioning based on decomposition into subspaces has been developed in early 90’s in the works of Nepomnyaschikh, Matsokin, Oswald, Griebel, Dahmen, Kunoth, Rüde, Xu, and others, with inspiration from particular applications, e.g., to fictitious domains, additive Schwarz methods, multilevel methods etc. Our paper presents a revisited general additive splitting-based preconditioning scheme which is not connected to any particular preconditioning method. We primarily work with infinite-dimensional spaces. Motivated by the work of Faber, Manteuffel, and Parter published in 1990, we derive spectral and norm lower and upper bounds for the resulting preconditioned operator. The bounds depend on three pairs of constants which can be estimated independently in practice. We subsequently describe a nontrivial general relationship between the infinite-dimensional results and their finite-dimensional analogs valid for the Galerkin discretization. The presented abstract framework is universal and easily applicable to specific approaches, which is illustrated on several examples.

[1]  Aslak Tveito,et al.  Preconditioning by inverting the Laplacian: an analysis of the eigenvalues , 2008 .

[2]  Axel Klawonn,et al.  An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..

[3]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[4]  Artem Napov,et al.  Algebraic Multigrid for Moderate Order Finite Elements , 2014, SIAM J. Sci. Comput..

[5]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[6]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[7]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[8]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[9]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[10]  Victor Eijkhout,et al.  The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods , 1991, SIAM Rev..

[11]  H. Yserentant Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .

[12]  Walter Zulehner,et al.  Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..

[13]  Owe Axelsson,et al.  On the Additive Version of the Algebraic Multilevel Iteration Method for Anisotropic Elliptic Problems , 1999, SIAM J. Sci. Comput..

[14]  Owe Axelsson,et al.  Iterative methods for the solution of the Naviers equations of elasticity , 1977 .

[15]  Owe Axelsson,et al.  Equivalent operator preconditioning for elliptic problems , 2009, Numerical Algorithms.

[16]  Ye.G. D'yakonov The construction of iterative methods based on the use of spectrally equivalent operators , 1966 .

[17]  Zdenek Strakos,et al.  Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.

[18]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[19]  James E. Gunn The numerical solution of ▿·a▿u=f by a semi-explicit alternating-direction iterative technique , 1964 .

[20]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[21]  James E. Gunn THE SOLUTION OF ELLIPTIC DIFFERENCE EQUATIONS BY SEMI-EXPLICIT ITERATIVE TECHNIQUES* , 1965 .

[22]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[23]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[24]  S. V. NEPOMNYASCHIKH Method of splitting into subspaces for solving elliptic boundary value problems in complex-form domains , 1991 .

[25]  Ullrich Rüde Mathematical and Computational Techniques for Multilevel Adaptive Methods , 1987 .

[26]  S. V. Nepomnyaschikh,et al.  Decomposition and Fictitious Domains Methods for Elliptic Boundary Value Problems , 2017 .

[27]  D. Arnold,et al.  Preconditioning discrete approximations of the Reissner-Mindlin plate model , 1997 .

[28]  D. V. KALYAEV,et al.  Algorithms for statistical estimation of coefficients of ordinary differential equations using observational data. Investigation of antiviral drug effects , 1991 .

[29]  Y. Maday,et al.  Optimal convergence properties of the FETI domain decomposition method , 2007 .

[30]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[31]  Ralf Hiptmair,et al.  Operator Preconditioning , 2006, Comput. Math. Appl..

[32]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[33]  Zdenek Strakos,et al.  Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator , 2018, SIAM J. Numer. Anal..

[34]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[35]  Zdenek Strakos,et al.  Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.

[36]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[37]  Walter Zulehner,et al.  Schur complement preconditioners for multiple saddle point problems of block tridiagonal form with application to optimization problems , 2017 .

[38]  Thomas A. Manteuffel,et al.  On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .

[39]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[40]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[41]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[42]  A. Friedman Foundations of modern analysis , 1970 .

[43]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[44]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[46]  Radim Blaheta,et al.  Displacement decomposition - incomplete factorization preconditioning techniques for linear elasticity problems , 1994, Numer. Linear Algebra Appl..

[47]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[48]  R. S. Falk,et al.  PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .

[49]  J. Nordbotten,et al.  Inexact linear solvers for control volume discretizations in porous media , 2015, Computational Geosciences.

[50]  Svetozar Margenov,et al.  Robust Algebraic Multilevel Methods and Algorithms , 2009 .

[51]  Peter Oswald,et al.  On Function Spaces Related to Finite Element Approximation Theory , 1990 .

[52]  F. Smithies Linear Operators , 2019, Nature.

[53]  Ralf Kornhuber,et al.  Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..

[54]  A. Klawonn Preconditioners for Indefinite Problems , 1996 .

[55]  O. Axelsson Iterative solution methods , 1995 .

[56]  Robert C. Kirby,et al.  From Functional Analysis to Iterative Methods , 2010, SIAM Rev..

[57]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[58]  S. Nepomnyaschikh Mesh theorems on traces, normalizations of function traces and their inversion , 1991 .

[59]  Catherine Elizabeth Powell,et al.  Energy Norm A Posteriori Error Estimation for Parametric Operator Equations , 2014, SIAM J. Sci. Comput..

[60]  Martin J. Gander,et al.  Continuous Analysis of the Additive Schwarz Method: a Stable Decomposition in $H^1$ , 2011 .

[61]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .