Modified Nanoenergetic Composites with Tunable Combustion Characteristics for Propellant Applications
暂无分享,去创建一个
Syed Barizuddin | Deepak Kapoor | Keshab Gangopadhyay | Shubhra Gangopadhyay | Rajagopalan Thiruvengadathan | Steven Nicolich | Andrey Bezmelnitsyn | S. Gangopadhyay | R. Thiruvengadathan | K. Gangopadhyay | S. Apperson | S. Barizuddin | D. Kapoor | Daniel Tappmeyer | Steven Apperson | Paul Redner | Mike Donadio | A. Bezmelnitsyn | P. Redner | S. Nicolich | D. Tappmeyer | M. Donadio
[1] Michelle L. Pantoya,et al. Laser ignition of nanocomposite thermites , 2004 .
[2] R. Simpson,et al. Use of Epoxides in the Sol−Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts , 2001 .
[3] R. Simpson,et al. Nanostructured energetic materials using sol-gel methodologies , 2001 .
[4] Anand Krishnan Prakash,et al. Synthesis and Reactivity of a Super‐Reactive Metastable Intermolecular Composite Formulation of Al/KMnO4 , 2005 .
[5] S. Valliappan,et al. Reactivity of aluminum nanopowders with metal oxides , 2005 .
[6] S. Gangopadhyay,et al. Nanoenergetic Composite of Mesoporous Iron Oxide and Aluminum Nanoparticles , 2006 .
[7] M. Pantoya,et al. Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites , 2005 .
[8] M. Pantoya,et al. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3 , 2006 .
[9] Jan A. Puszynski,et al. Processing and Ignition Characteristics of Aluminum-Bismuth Trioxide Nanothermite System , 2007 .
[10] Deepak Kapoor,et al. Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites , 2007 .
[11] S. Son,et al. Nano‐Scale Tungsten Oxides for Metastable Intermolecular Composites , 2004 .
[12] S. Gangopadhyay,et al. Nanoenergetic Composites of CuO Nanorods, Nanowires, and Al‐Nanoparticles , 2008 .
[13] B. Gaber,et al. A versatile synthetic approach to periodic mesoporous organosilicas , 2004 .
[14] M. Zachariah,et al. Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. , 2005, Nano letters.
[15] R. Armstrong,et al. Enhanced Propellant Combustion with Nanoparticles , 2003 .
[16] S. Son,et al. Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3) , 2007 .
[17] M. Zachariah,et al. Aero-Sol-Gel Synthesis of Nanoporous Iron-Oxide Particles: A Potential Oxidizer for Nanoenergetic Materials , 2004 .
[18] S. Bhattacharya,et al. A Novel On-Chip Diagnostic Method to Measure Burn Rates of Energetic Materials , 2006 .
[19] Hyung‐Ho Park,et al. Concentration-dependent mesostructure of surfactant-templated mesoporous silica thin film , 2006 .
[20] Blaine W. Asay,et al. Combustion velocities and propagation mechanisms of metastable interstitial composites , 2005 .
[21] A. Gash,et al. Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique , 2005 .
[22] N. Eisenreich,et al. Investigation of the Burning Behavior of Cryogenic Solid Propellants , 2002 .