Horseshoes in a New Switching Circuit via Wien-Bridge oscillator

In this paper we revisit a switching circuit designed by the authors and present a theoretical analysis on the existence of chaos in this circuit. For the ordinary differential equations describing this circuit, we give a computer-aided proof in terms of cross-section and Poincare map, by applying a modern theory of topological horseshoes theory to the obtained Poincare map, that this map is semiconjugate to the two-shift map. This implies that the corresponding differential equations exhibit chaos.