User-Driven Programming Support for Rapid Visualization Authoring in D3

Fig. 1. An example of an interactive visualization designed using the Minerva system. A user can select a visualization such as a scatterplot to create from the Template Panel (A). The code responsible for creating the scatterplot is displayed within the Editor (B) and the corresponding visualization rendered in the Visualization Panel (C). A list of recommended interactions is displayed to the user in the Recommendation Panel (D). A user can then choose a recommended interaction such as a Hover and the code responsible for implementing the interaction is added to the interface and highlighted for the user to view and modify (E). Once a user is satisfied with their visualization, they can export the code and visualization using the Controls (F) and (G).

[1]  Ravi Chugh,et al.  Integrated Visualization Editing via Parameterized Declarative Templates , 2021, CHI.

[2]  Janet Elizabeth Hope Open Source , 2017, Encyclopedia of GIS.

[3]  Bongshin Lee,et al.  Reflecting on the Evaluation of Visualization Authoring Systems : Position Paper , 2018, 2018 IEEE Evaluation and Beyond - Methodological Approaches for Visualization (BELIV).

[4]  Wei Chen,et al.  The design space of construction tools for information visualization: A survey , 2017, J. Vis. Lang. Comput..

[5]  Arvind Satyanarayan,et al.  Lyra: An Interactive Visualization Design Environment , 2014, Comput. Graph. Forum.

[6]  Maneesh Agrawala,et al.  Converting Basic D3 Charts into Reusable Style Templates , 2016, IEEE Transactions on Visualization and Computer Graphics.

[7]  Charles Perin,et al.  What is Interaction for Data Visualization? , 2020, IEEE Transactions on Visualization and Computer Graphics.

[8]  Miryung Kim,et al.  An ethnographic study of copy and paste programming practices in OOPL , 2004, Proceedings. 2004 International Symposium on Empirical Software Engineering, 2004. ISESE '04..

[9]  Tova Milo,et al.  Automatically Generating Data Exploration Sessions Using Deep Reinforcement Learning , 2020, SIGMOD Conference.

[10]  Jun Sun,et al.  Mining implicit design templates for actionable code reuse , 2017, 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE).

[11]  Maneesh Agrawala,et al.  Deconstructing and restyling D3 visualizations , 2014, UIST.

[12]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[13]  Tamara Munzner,et al.  A Multi-Level Typology of Abstract Visualization Tasks , 2013, IEEE Transactions on Visualization and Computer Graphics.

[14]  Michael Stonebraker,et al.  Beagle : Automated Extraction and Interpretation of Visualizations from the Web , 2017 .

[15]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[16]  Çagatay Demiralp,et al.  Data2Vis: Automatic Generation of Data Visualizations Using Sequence-to-Sequence Recurrent Neural Networks , 2018, IEEE Computer Graphics and Applications.

[17]  Michele Mauri,et al.  RAWGraphs: A Visualisation Platform to Create Open Outputs , 2017, CHItaly.

[18]  cCaugatay Demiralp,et al.  Sigma Worksheet: Interactive Construction of OLAP Queries , 2020, ArXiv.

[19]  Leilani Battle,et al.  Exploring Visualization Implementation Challenges Faced by D3 Users Online , 2021, ArXiv.

[20]  Frederick Hayes-Roth,et al.  Rule-based systems , 1985, CACM.

[21]  Pat Hanrahan,et al.  Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases , 2002, IEEE Trans. Vis. Comput. Graph..

[22]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[23]  Eric Horvitz,et al.  Principles of mixed-initiative user interfaces , 1999, CHI '99.

[24]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[25]  Kanit Wongsuphasawat,et al.  Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[26]  Dominik Moritz,et al.  mage: Fluid Moves Between Code and Graphical Work in Computational Notebooks , 2020, UIST.

[27]  Maneesh Agrawala,et al.  Searching the Visual Style and Structure of D3 Visualizations , 2019, IEEE Transactions on Visualization and Computer Graphics.

[28]  Ulf Brefeld,et al.  MDP-based Itinerary Recommendation using Geo-Tagged Social Media , 2018, IDA.

[29]  Arvind Satyanarayan,et al.  Vega-Lite: A Grammar of Interactive Graphics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[30]  Guoliang Li,et al.  DeepEye: Towards Automatic Data Visualization , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[31]  Aditya G. Parameswaran,et al.  Towards Visualization Recommendation Systems , 2016, SGMD.

[32]  D. Barr,et al.  Random effects structure for confirmatory hypothesis testing: Keep it maximal. , 2013, Journal of memory and language.

[33]  Tim Kraska,et al.  VizML: A Machine Learning Approach to Visualization Recommendation , 2018, CHI.

[34]  Arvind Satyanarayan,et al.  Critical Reflections on Visualization Authoring Systems , 2019, IEEE Transactions on Visualization and Computer Graphics.

[35]  Kanit Wongsuphasawat,et al.  Voyager 2: Augmenting Visual Analysis with Partial View Specifications , 2017, CHI.

[36]  Zhen Wen,et al.  Behavior-driven visualization recommendation , 2009, IUI.

[37]  Arvind Satyanarayan,et al.  Reactive Vega: A Streaming Dataflow Architecture for Declarative Interactive Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[38]  John T. Stasko,et al.  Data Illustrator: Augmenting Vector Design Tools with Lazy Data Binding for Expressive Visualization Authoring , 2018, CHI.

[39]  Arvind Satyanarayan,et al.  Lyra 2: Designing Interactive Visualizations by Demonstration , 2020, IEEE transactions on visualization and computer graphics.

[40]  Cong Yan,et al.  Auto-Suggest: Learning-to-Recommend Data Preparation Steps Using Data Science Notebooks , 2020, SIGMOD Conference.

[41]  Alvin Cheung,et al.  Falx: Synthesis-Powered Visualization Authoring , 2021, CHI.

[42]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[43]  Sumit Gulwani,et al.  Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable Code for Data Scientists , 2020, CHI.

[44]  Arvind Satyanarayan,et al.  Visual Debugging Techniques for Reactive Data Visualization , 2016, Comput. Graph. Forum.

[45]  Guy Shani,et al.  An MDP-Based Recommender System , 2002, J. Mach. Learn. Res..

[46]  John T. Stasko,et al.  Toward a Deeper Understanding of the Role of Interaction in Information Visualization , 2007, IEEE Transactions on Visualization and Computer Graphics.

[47]  Ben Shneiderman,et al.  Interactive Dynamics for Visual Analysis , 2012 .

[48]  Yu Zhang,et al.  Interaction+: Interaction enhancement for web-based visualizations , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[49]  R. Bellman A Markovian Decision Process , 1957 .

[50]  Jeffrey Heer,et al.  Formalizing Visualization Design Knowledge as Constraints: Actionable and Extensible Models in Draco , 2018, IEEE Transactions on Visualization and Computer Graphics.

[51]  Alex Endert,et al.  Visualization by Demonstration: An Interaction Paradigm for Visual Data Exploration , 2017, IEEE Transactions on Visualization and Computer Graphics.