Quantum gravity effects in the Kerr spacetime

We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the ``dressing'' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.

[1]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[2]  Dimensionally reduced gravity theories are asymptotically safe , 2003, hep-th/0304117.

[3]  M. Reuter,et al.  Quantum Gravity Effects in Rotating Black Holes , 2006, hep-th/0612037.

[4]  A. Codello,et al.  Low energy quantum gravity from the effective average action , 2010, 1006.3808.

[5]  D. Christodoulou,et al.  Reversible transformations of a charged black hole , 1971 .

[6]  C. Wetterich,et al.  Average action for the Higgs model with abelian gauge symmetry , 1993 .

[7]  Martin Reuter,et al.  Background Independence and Asymptotic Safety in Conformally Reduced Gravity , 2008, 0801.3287.

[8]  Frank Saueressig,et al.  Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.

[9]  F. Saueressig,et al.  A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior , 2002 .

[10]  Robert H. Boyer,et al.  Maximal Analytic Extension of the Kerr Metric , 1967 .

[11]  On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.

[12]  M. Reuter,et al.  Renormalization group improved gravitational actions: A Brans-Dicke approach , 2004 .

[13]  C. Wetterich,et al.  Exact evolution equation for scalar electrodynamics , 1994 .

[14]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[15]  M. Reuter,et al.  From big bang to asymptotic de Sitter: complete cosmologies in a quantum gravity framework , 2005, hep-th/0507167.

[16]  M. Reuter,et al.  Fractal spacetime structure in asymptotically safe gravity , 2005 .

[17]  M. Reuter Renormalization of the topological charge in Yang-Mills theory , 1996 .

[18]  Damien A. Easson,et al.  Black holes in an asymptotically safe gravity theory with higher derivatives , 2010, 1007.1317.

[19]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[20]  Edwin F. Taylor,et al.  Exploring Black Holes , 2000 .

[21]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[22]  G. F. Simmons Differential Equations With Applications and Historical Notes , 1972 .

[23]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[24]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[25]  M. Reuter,et al.  Running Newton constant, improved gravitational actions, and galaxy rotation curves , 2004 .

[26]  A. Bonanno,et al.  Cosmological Perturbations in Renormalization Group Derived Cosmologies , 2004 .

[27]  C. Wetterich Effective average action in statistical physics and quantum field theory , 2001 .

[28]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[29]  L. Smarr Mass Formula for Kerr Black Holes , 1973 .

[30]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[31]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[32]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[33]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[34]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[35]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[36]  D. Christodoulou Reversible and Irreversible Transformations in Black-Hole Physics , 1970 .

[37]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[38]  A. Bonanno,et al.  The accelerated expansion of the universe as a crossover phenomenon , 2005 .

[39]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[40]  E. Poisson A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics , 2004 .

[41]  Martin Reuter,et al.  Scale-dependent metric and causal structures in Quantum Einstein Gravity , 2007 .

[42]  O. Blaes Exploring Black Holes: Introduction to General Relativity , 2001 .

[43]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[44]  Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.

[45]  A. Bonanno,et al.  Noether symmetry approach in pure gravity with variable G and Λ , 2006, gr-qc/0610012.

[46]  J. Bekenstein,et al.  Black holes and the second law , 2019, Jacob Bekenstein.

[47]  Martin Reuter,et al.  A minimal length from the cutoff modes in asymptotically safe quantum gravity , 2006 .

[48]  R. Kerr,et al.  Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .

[49]  Alfio Bonanno,et al.  Spacetime structure of an evaporating black hole in quantum gravity , 2006 .

[50]  A. Komar Covariant conservation laws in general relativity , 1959 .

[51]  J. Bardeen,et al.  Kerr Metric Black Holes , 1970, Nature.

[52]  Global extensions of spacetimes describing asymptotic final states of black holes , 1995, gr-qc/9507055.

[53]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[54]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[55]  C. Wetterich,et al.  Running gauge coupling in three dimensions and the electroweak phase transition , 1993 .

[56]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[57]  Alfio Bonanno,et al.  Entropy signature of the running cosmological constant , 2007, 0706.0174.

[58]  J. Lense,et al.  Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .

[59]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[60]  Alfio Bonanno,et al.  Quantum gravity effects near the null black hole singularity , 1999 .

[61]  Daniel F. Litim,et al.  Black holes and asymptotically safe gravity , 2010, 1002.0260.

[62]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[63]  Stephen W. Hawking,et al.  Gravitational radiation from colliding black holes , 1971 .

[64]  Brandon Carter,et al.  Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .

[65]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[66]  Reuter Effective average action of Chern-Simons field theory. , 1996, Physical review. D, Particles and fields.

[67]  E. Poisson A Relativist's Toolkit: Contents , 2004 .

[68]  J. Romain,et al.  Introduction to General Relativity , 1965 .

[69]  E. Bentivegna,et al.  Confronting the IR fixed point cosmology with high-redshift observations , 2003 .

[70]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[71]  A. Bonanno,et al.  Proper time flow equation for gravity , 2005 .

[72]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[73]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .