FPTAS for Minimizing the Earth Mover’s Distance Under Rigid Transformations and Related Problems
暂无分享,去创建一个
[1] K. S. Arun,et al. Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[2] Trevor Darrell,et al. Fast contour matching using approximate earth mover's distance , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..
[3] Leonidas J. Guibas,et al. The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.
[4] Kurt Mehlhorn,et al. Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.
[5] Pankaj K. Agarwal,et al. On Bipartite Matching under the RMS Distance , 2006, CCCG.
[6] Jinhui Xu,et al. FPTAS for Minimizing Earth Mover's Distance under Rigid Transformations , 2013, ESA.
[7] Jugal K. Kalita,et al. A comparison of algorithms for the pairwise alignment of biological networks , 2014, Bioinform..
[8] Alexandr Andoni,et al. Earth mover distance over high-dimensional spaces , 2008, SODA '08.
[9] Michael T. Goodrich,et al. Geometric Pattern Matching Under Euclidean Motion , 1993, Comput. Geom..
[10] Alon Itai,et al. Improvements on bottleneck matching and related problems using geometry , 1996, SCG '96.
[11] Pankaj K. Agarwal,et al. Algorithms for the transportation problem in geometric settings , 2012, SODA.
[12] Kurt Mehlhorn,et al. Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.
[13] Alexandr Andoni,et al. Parallel algorithms for geometric graph problems , 2013, STOC.
[14] Günter Rote,et al. Matching Point Sets with Respect to the Earth Mover's Distance , 2005, ESA.
[15] Paul J. Besl,et al. A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[16] David P. Woodruff,et al. Efficient Sketches for Earth-Mover Distance, with Applications , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[17] Leonidas J. Guibas,et al. Discrete Geometric Shapes: Matching, Interpolation, and Approximation , 2000, Handbook of Computational Geometry.
[18] Sergio Cabello,et al. On the parameterized complexity of d-dimensional point set pattern matching , 2006, Inf. Process. Lett..
[19] Alon Efrat,et al. Geometric Pattern Matching in d-Dimensional Space , 1995, ESA.
[20] Piotr Indyk,et al. Combinatorial and Experimental Methods for Approximate Point Pattern Matching , 2003, Algorithmica.
[21] Piotr Indyk,et al. A near linear time constant factor approximation for Euclidean bichromatic matching (cost) , 2007, SODA '07.
[22] Remco C. Veltkamp,et al. Approximation Algorithms for Computing the Earth Mover's Distance Under Transformations , 2005, ISAAC.
[23] Trevor Darrell,et al. Fast contour matching using approximate earth mover's distance , 2004, CVPR 2004.
[24] Remco C. Veltkamp,et al. Using transportation distances for measuring melodic similarity , 2003, ISMIR.
[25] Micha Sharir,et al. On the performance of the ICP algorithm , 2008, Comput. Geom..
[26] David E. Cardoze,et al. Pattern matching for spatial point sets , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[27] Joseph S. B. Mitchell,et al. Approximate Geometric Pattern Matching Under Rigid Motions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[28] Helmut Alt,et al. Approximate Matching of Polygonal Shapes (Extended Abstract) , 1991, SCG.
[29] L. Guibas,et al. Finding color and shape patterns in images , 1999 .
[30] Remco C. Veltkamp,et al. A Pseudo-Metric for Weighted Point Sets , 2002, ECCV.
[31] Jon M. Kleinberg,et al. On dynamic Voronoi diagrams and the minimum Hausdorff distance for point sets under Euclidean motion in the plane , 1992, SCG '92.
[32] Joachim Gudmundsson,et al. Approximate one-to-one point pattern matching , 2012, J. Discrete Algorithms.
[33] Esther M. Arkin,et al. Matching Points into Pairwise-Disjoint Noise Regions: Combinatorial Bounds and Algorithms , 1992, INFORMS J. Comput..
[34] David P. Woodruff,et al. Efficient Sketches for Earth-Mover Distance, with Applications , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.