Visualisation and Quantitative Analysis of the Rodent Malaria Liver Stage by Real Time Imaging

The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium.

[1]  M. Mota,et al.  A Small Molecule Inhibitor of Signal Peptide Peptidase Inhibits Plasmodium Development in the Liver and Decreases Malaria Severity , 2009, PloS one.

[2]  M. Aepfelbacher,et al.  Alteration of the parasite plasma membrane and the parasitophorous vacuole membrane during exo-erythrocytic development of malaria parasites. , 2009, Protist.

[3]  C. Janse,et al.  Simple and sensitive antimalarial drug screening in vitro and in vivo using transgenic luciferase expressing Plasmodium berghei parasites. , 2008, International journal for parasitology.

[4]  M. Leippe,et al.  An efficient fluorimetric method to measure the viability of intraerythrocytic Plasmodium falciparum , 2008, Biological chemistry.

[5]  J. Craft Challenges facing drug development for malaria. , 2008, Current opinion in microbiology.

[6]  Martijn A. Huynen,et al.  Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity , 2008, PLoS pathogens.

[7]  G. van Gemert,et al.  Temperature Shift and Host Cell Contact Up-Regulate Sporozoite Expression of Plasmodium falciparum Genes Involved in Hepatocyte Infection , 2008, PLoS pathogens.

[8]  M. Mota,et al.  Genistein-Supplemented Diet Decreases Malaria Liver Infection in Mice and Constitutes a Potential Prophylactic Strategy , 2008, PloS one.

[9]  P. Rasoanaivo,et al.  Isolation and antimalarial activity of new morphinan alkaloids on Plasmodium yoelii liver stage. , 2008, Bioorganic & medicinal chemistry.

[10]  R. Price,et al.  Plasmodium vivax trophozoites insensitive to chloroquine , 2008, Malaria Journal.

[11]  S. Kappe,et al.  Malaria: progress, perils, and prospects for eradication. , 2008, The Journal of clinical investigation.

[12]  Nicholas J White,et al.  Vivax malaria: neglected and not benign. , 2007, The American journal of tropical medicine and hygiene.

[13]  S. Kappe,et al.  Release of Hepatic Plasmodium yoelii Merozoites into the Pulmonary Microvasculature , 2007, PLoS pathogens.

[14]  R. Bachelier,et al.  Advances in optical imaging and novel model systems for cancer metastasis research , 2007, Clinical & Experimental Metastasis.

[15]  S. Thiberge,et al.  [A new view of malaria provided by parasite imaging]. , 2007, Bulletin de l'Academie nationale de medecine.

[16]  K. Matuschewski,et al.  Hitting malaria before it hurts: attenuated Plasmodium liver stages , 2007, Cellular and Molecular Life Sciences.

[17]  M. Mota,et al.  Dissecting in vitro host cell infection by Plasmodium sporozoites using flow cytometry , 2007, Cellular microbiology.

[18]  S. Shorte,et al.  In vivo imaging of malaria parasites in the murine liver , 2007, Nature Protocols.

[19]  S. Hoffman,et al.  Prevention and treatment of vivax malaria , 2007, Current infectious disease reports.

[20]  J. Carlton,et al.  Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. , 2007, The Journal of infectious diseases.

[21]  Charl P. Botha,et al.  Integrated visualization of multi-angle bioluminescence imaging and micro CT , 2007, SPIE Medical Imaging.

[22]  B. Rice,et al.  Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. , 2007, Journal of biomedical optics.

[23]  David G Lalloo,et al.  UK malaria treatment guidelines. , 2007, The Journal of infection.

[24]  S. Kappe,et al.  A clash to conquer: the malaria parasite liver infection , 2006, Molecular microbiology.

[25]  D. Wirth,et al.  High-Throughput Plasmodium falciparum Growth Assay for Malaria Drug Discovery , 2006, Antimicrobial Agents and Chemotherapy.

[26]  Ana Rodriguez,et al.  The silent path to thousands of merozoites: the Plasmodium liver stage , 2006, Nature Reviews Microbiology.

[27]  S. Kappe,et al.  Quantitative isolation and in vivo imaging of malaria parasite liver stages. , 2006, International journal for parasitology.

[28]  Rogerio Amino,et al.  Manipulation of Host Hepatocytes by the Malaria Parasite for Delivery into Liver Sinusoids , 2006, Science.

[29]  M. Mota,et al.  Infection by and protective immune responses against Plasmodium berghei ANKA are not affected in macrophage scavenger receptors A deficient mice , 2006, BMC Microbiology.

[30]  Kevin G Rice,et al.  Quantitative bioluminescence imaging of transgene expression in vivo. , 2006, Analytical biochemistry.

[31]  S. Levy,et al.  Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species , 2006, Cellular microbiology.

[32]  F. Cohen,et al.  Searching for New Antimalarial Therapeutics amongst Known Drugs , 2006, Chemical biology & drug design.

[33]  V. Heussler,et al.  In vivo imaging enters parasitology. , 2006, Trends in parasitology.

[34]  R. Sauerwein,et al.  New Approach for High-Throughput Screening of Drug Activity on Plasmodium Liver Stages , 2006, Antimicrobial Agents and Chemotherapy.

[35]  Ivo Que,et al.  Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Ménard,et al.  In vivo imaging of malaria parasites--recent advances and future directions. , 2005, Current opinion in microbiology.

[37]  David K Welsh,et al.  Bioluminescence imaging in living organisms. , 2005, Current opinion in biotechnology.

[38]  M. Mota,et al.  Malaria Vaccines: Back to the Future? , 2005, Science.

[39]  K. Rieckmann,et al.  Efficacy of monthly tafenoquine for prophylaxis of Plasmodium vivax and multidrug-resistant P. falciparum malaria. , 2004, The Journal of infectious diseases.

[40]  Chris J Janse,et al.  A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. , 2004, Molecular and biochemical parasitology.

[41]  V. Nussenzweig,et al.  Quantitative Plasmodium sporozoite neutralization assay (TSNA). , 2004, Journal of immunological methods.

[42]  S. Croft,et al.  Antimalarial drug discovery: efficacy models for compound screening , 2004, Nature Reviews Drug Discovery.

[43]  Ana Rodriguez,et al.  Invasion of mammalian host cells by Plasmodium sporozoites , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[44]  D. Braitman,et al.  A new primaquine analogue, tafenoquine (WR 238605), for prophylaxis against Plasmodium falciparum malaria. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[45]  M. Tsuji,et al.  Detection of malaria liver-stages in mice infected through the bite of a single Anopheles mosquito using a highly sensitive real-time PCR. , 2001, International journal for parasitology.

[46]  V. Sharma,et al.  Plasmodium vivax Polymorphism in a Clinical Drug Trial , 2001, Clinical Diagnostic Laboratory Immunology.

[47]  H. D. del Portillo,et al.  Malaria parasites contain two identical copies of an elongation factor 1 alpha gene. , 1998, Molecular and biochemical parasitology.

[48]  W. Milhous,et al.  The chemotherapy of rodent malaria. LI. Studies on a new 8-aminoquinoline, WR 238,605. , 1993, Annals of tropical medicine and parasitology.

[49]  T. McCutchan,et al.  Plasmodium berghei: quantitation of in vitro effects of antimalarial drugs on exoerythrocytic development by a ribosomal RNA probe. , 1991, Experimental parasitology.

[50]  S. Meshnick,et al.  In vitro effects of primaquine and primaquine metabolites on exoerythrocytic stages of Plasmodium berghei. , 1990, The American journal of tropical medicine and hygiene.

[51]  P. Nguyen-Dinh,et al.  In vitro activity of antimalarial compounds on the exoerythrocytic stages of Plasmodium cynomolgi and P. knowlesi. , 1989, The American journal of tropical medicine and hygiene.

[52]  D. Warhurst,et al.  The chemotherapy of rodent malaria. XLIV. Studies on the mode of action of CM 6606, an indolo (3,2-c) quinoline N-oxide. , 1989, Annals of tropical medicine and parasitology.

[53]  V. Nussenzweig,et al.  Interferon-gamma inhibits the intrahepatocytic development of malaria parasites in vitro. , 1987, Journal of immunology.

[54]  W. Peters Chemotherapy of Rodent Malaria. , 1981 .

[55]  H. Most,et al.  Rodent systems (Plasmodium berghei-Anopheles Stephensi) for screening compounds for potential causal prophylaxis. , 1975, The American journal of tropical medicine and hygiene.

[56]  W. Borkowsky,et al.  HIV protease inhibitors inhibit the development of preerythrocytic-stage plasmodium parasites. , 2009, The Journal of infectious diseases.

[57]  J. Sattabongkot,et al.  Culture of exoerythrocytic stages of the malaria parasites Plasmodium falciparum and Plasmodium vivax. , 2009, Methods in molecular biology.

[58]  K. Matuschewski,et al.  High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. , 2006, Molecular and biochemical parasitology.

[59]  C. Janse,et al.  Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice , 2006, Nature Protocols.

[60]  C. Janse,et al.  High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei , 2006, Nature Protocols.

[61]  T. Blackwell,et al.  Bioluminescence imaging. , 2005, Proceedings of the American Thoracic Society.

[62]  M. Mota,et al.  Parasitology. Malaria vaccines: back to the future? , 2005, Science.

[63]  J. Holenz,et al.  Retarded development of exoerythrocytic stages of the rodent malaria parasite Plasmodium berghei in human hepatoma cells by extracts from Dioncophyllaceae and Ancistrocladaceae species. , 1997, International journal for parasitology.