A Blueprint for Target Motion: fMRI Reveals Perceived Sequential Complexity to Modulate Premotor Cortex

The execution of movements that are guided by an increasingly complex target motion is known to draw on premotor cortices. Whole-brain functional magnetic resonance imaging was used to investigate whether, in the absence of any movement, attending to and predicting increasingly complex target motion also rely on premotor cortices. Complexity was varied as a function of number of sequential elements and amount of dynamic sequential trend in a pulsing target motion. As a result, serial prediction caused activations in premotor and parietal cortices, particularly within the right hemisphere. Parametric analyses revealed that the right ventrolateral premotor cortex and the right anterior intraparietal sulcus were the only areas that, in addition, covaried positively with both behavioral and physical measures of sequential complexity. Further areas that covaried positively with increasing task difficulty reflected influences of both number and trend manipulation. In particular, increasing element number drew on dorsal premotor and corresponding posterior intraparietal regions, whereas increasing trend drew on the visual motion area and area V4. The present findings demonstrate that premotor involvement directly reflects perceptual complexity in attended and predicted target motion. It is suggested that when we try to predict how a target will move, the motor system generates a "blueprint" of the observed motion that allows potential sensorimotor integration. In the absence of any motor requirement, this blueprint appears to be not a by-product of motor planning, but rather the basis for target motion prediction.

[1]  M. Hallett,et al.  Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. , 1998, Brain : a journal of neurology.

[2]  M. Wiesendanger,et al.  Sensory input to the motor fields of the agranular frontal cortex: A comparison of the precentral, supplementary motor and premotor cortex , 1985, Behavioural Brain Research.

[3]  J. Tanji,et al.  Oculomotor sequence learning: a positron emission tomography study , 1998, Experimental Brain Research.

[4]  G. Rizzolatti,et al.  Coding of peripersonal space in inferior premotor cortex (area F4). , 1996, Journal of neurophysiology.

[5]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[6]  J Tanji,et al.  Role for cells in the presupplementary motor area in updating motor plans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Inase,et al.  Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. , 1991, Journal of neurophysiology.

[8]  RP Dum,et al.  The origin of corticospinal projections from the premotor areas in the frontal lobe , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  J Tanji,et al.  Intracortical microstimulation of bilateral frontal eye field. , 1998, Journal of neurophysiology.

[10]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[11]  S Clare,et al.  Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area , 1997, Annals of neurology.

[12]  G. Rizzolatti,et al.  Visuomotor neurons: ambiguity of the discharge or 'motor' perception? , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[13]  J Tanji,et al.  Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: A retrograde double labeling study , 1993, The Journal of comparative neurology.

[14]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[15]  D. Humphrey,et al.  Motor control : concepts and issues , 1991 .

[16]  D. V. von Cramon,et al.  Interval and ordinal properties of sequences are associated with distinct premotor areas. , 2001, Cerebral cortex.

[17]  J. B. Preston,et al.  Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe , 1994, The Journal of comparative neurology.

[18]  J. Weiss,et al.  Neural programming , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[19]  G. Aschersleben,et al.  The theory of event coding (TEC): A framework of perception and action , 2001 .

[20]  G Rizzolatti,et al.  The classic supplementary motor area is formed by two independent areas. , 1996, Advances in neurology.

[21]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[22]  O. Hikosaka,et al.  Transition of Brain Activation from Frontal to Parietal Areas in Visuomotor Sequence Learning , 1998, The Journal of Neuroscience.

[23]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[24]  J. Maunsell,et al.  Effects of Attention on the Processing of Motion in Macaque Middle Temporal and Medial Superior Temporal Visual Cortical Areas , 1999, The Journal of Neuroscience.

[25]  D. V. Cramon,et al.  Subprocesses of Performance Monitoring: A Dissociation of Error Processing and Response Competition Revealed by Event-Related fMRI and ERPs , 2001, NeuroImage.

[26]  G. Rizzolatti,et al.  Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position , 2004, Experimental Brain Research.

[27]  Luciano Fadiga,et al.  Space Coding in Inferior Premotor Cortex (Area F4): Facts and Speculations , 1996 .

[28]  A. Berthoz,et al.  Functional Anatomy of a Prelearned Sequence of Horizontal Saccades in Humans , 1996, The Journal of Neuroscience.

[29]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[30]  O. Hikosaka,et al.  Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. , 1996, Journal of neurophysiology.

[31]  J Tanji,et al.  Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex. , 1996, Journal of neurophysiology.

[32]  Karl J. Friston,et al.  Nonlinear Regression in Parametric Activation Studies , 1996, NeuroImage.

[33]  O. Hikosaka,et al.  Differential Roles of the Frontal Cortex, Basal Ganglia, and Cerebellum in Visuomotor Sequence Learning , 1998, Neurobiology of Learning and Memory.

[34]  RP Dum,et al.  Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Lynn C. Robertson,et al.  A Review of Hemispheric Asymmetry: What's Right and What's Left , 1994, Journal of Cognitive Neuroscience.

[36]  G. Barnes,et al.  Cerebral control of eye movements. I. The relationship between cerebral lesion sites and smooth pursuit deficits. , 1996, Brain : a journal of neurology.

[37]  Aniruddh D. Patel,et al.  Temporal patterns of human cortical activity reflect tone sequence structure , 2000, Nature.

[38]  J. Velay,et al.  Hemispheric asymmetry and interhemispheric transferin reaching programming , 1999, Neuropsychologia.

[39]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  S P Wise,et al.  The premotor cortex and nonstandard sensorimotor mapping. , 1996, Canadian journal of physiology and pharmacology.

[41]  J C Mazziotta,et al.  Merging of oculomotor and somatomotor space coding in the human right precentral gyrus. , 1997, Brain : a journal of neurology.

[42]  Guy Marchal,et al.  FMRI Studies of the Supplementary Motor Area and the Premotor Cortex , 1997, NeuroImage.

[43]  A. Gordon,et al.  Functional magnetic resonance imaging of motor, sensory, and posterior parietal cortical areas during performance of sequential typing movements , 1998, Experimental Brain Research.

[44]  Jun Tanji,et al.  Role for supplementary motor area cells in planning several movements ahead , 1994, Nature.

[45]  R. Schubotz,et al.  Dynamic patterns make the premotor cortex interested in objects: influence of stimulus and task revealed by fMRI. , 2002, Brain research. Cognitive brain research.

[46]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses , 1981, Behavioural Brain Research.

[47]  Francesco Lacquaniti,et al.  Neural bases of motor behaviour , 1996 .

[48]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.

[49]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[50]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[51]  D Regan Spatial orientation in aviation: visual contributions. , 1995, Journal of vestibular research : equilibrium & orientation.

[52]  F. Lacquaniti,et al.  Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. , 2001, Cerebral cortex.

[53]  P. Roland,et al.  Fields in human motor areas involved in preparation for reaching, actual reaching, and visuomotor learning: a positron emission tomography study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  Karl J. Friston,et al.  Generalisability, Random Effects & Population Inference , 1998, NeuroImage.

[55]  H. Freund,et al.  Premotor cortex and conditional motor learning in man. , 1990, Brain : a journal of neurology.

[56]  Karl J. Friston,et al.  Cortical areas and the selection of movement: a study with positron emission tomography , 1991, Experimental Brain Research.

[57]  M. Hallett,et al.  Complexity affects regional cerebral blood flow change during sequential finger movements , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  David A. Caulton,et al.  On the Modularity of Sequence Representation , 1995 .

[59]  Cerebral control of eye movements. , 1981, ORL; journal for oto-rhino-laryngology and its related specialties.

[60]  C D Frith,et al.  Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. , 1997, Brain : a journal of neurology.

[61]  S. Wise,et al.  The premotor cortex and nonstandard sensorimotor mapping 1 , 1996 .

[62]  Daniel B. Willingham,et al.  Implicit motor sequence learning is not purely perceptual , 1999, Memory & cognition.

[63]  W. Prinz Perception and Action Planning , 1997 .

[64]  D. Boussaoud Primate premotor cortex: modulation of preparatory neuronal activity by gaze angle. , 1995, Journal of neurophysiology.

[65]  A. Friederici,et al.  Time Perception and Motor Timing: A Common Cortical and Subcortical Basis Revealed by fMRI , 2000, NeuroImage.

[66]  D. V. Cramon,et al.  Predicting Perceptual Events Activates Corresponding Motor Schemes in Lateral Premotor Cortex: An fMRI Study , 2002, NeuroImage.

[67]  R. Passingham,et al.  Premotor cortex and the conditions for movement in monkeys (Macaca fascicularis) , 1985, Behavioural Brain Research.

[68]  H Shibasaki,et al.  Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related potentials. , 1999, Brain : a journal of neurology.

[69]  D. Brooks,et al.  Motor sequence learning: a study with positron emission tomography , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[71]  H. Kornhuber,et al.  Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale , 1965, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[72]  Karl J. Friston,et al.  Attentional modulation of effective connectivity from V2 to V5/MT in humans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[73]  R Caminiti,et al.  Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections. , 2001, Cerebral cortex.

[74]  T. Mima,et al.  Human presupplementary motor area is active before voluntary movement: subdural recording of Bereitschaftspotential from medial frontal cortex , 2000, Experimental Brain Research.

[75]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[76]  D. Pandya,et al.  Supplementary motor area structure and function: Review and hypotheses , 1985 .

[77]  Scott T. Grafton,et al.  Functional Mapping of Sequence Learning in Normal Humans , 1995, Journal of Cognitive Neuroscience.

[78]  A G Feldman,et al.  Some problems of motor control. , 1988, Journal of motor behavior.

[79]  R. Kettner,et al.  Control of remembered reaching sequences in monkey , 1996, Experimental Brain Research.

[80]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[81]  C. Gross,et al.  Visuospatial properties of ventral premotor cortex. , 1997, Journal of neurophysiology.

[82]  C Ochipa,et al.  Limb apraxia. , 2000, Seminars in neurology.

[83]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[84]  G. Luppino,et al.  Parietofrontal Circuits for Action and Space Perception in the Macaque Monkey , 2001, NeuroImage.

[85]  G. Rizzolatti,et al.  Space and selective attention , 1994 .

[86]  G. Aschersleben,et al.  The Theory of Event Coding (TEC): a framework for perception and action planning. , 2001, The Behavioral and brain sciences.

[87]  G Lohmann,et al.  LIPSIA--a new software system for the evaluation of functional magnetic resonance images of the human brain. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[88]  Georg Goldenberg,et al.  Imitation and Matching of Hand and Finger Postures , 2001, NeuroImage.

[89]  A M Burton,et al.  Learning complex sequences: no role for observation? , 2001, Psychological research.

[90]  Scott T. Grafton,et al.  Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. , 1997, Brain : a journal of neurology.

[91]  Richard A. Andersen,et al.  Coordinate transformations in the representation of spatial information , 1993, Current Opinion in Neurobiology.

[92]  A. Mikami,et al.  Neuronal activity in the frontal eye field of the monkey is modulated while attention is focused on to a stimulus in the peripheral visual field, irrespective of eye movement , 1997, Neuroscience Research.

[93]  S. Wise The primate premotor cortex: past, present, and preparatory. , 1985, Annual review of neuroscience.

[94]  G. Goldenberg Matching and imitation of hand and finger posturesin patients with damage in the left or right hemispheres , 1999, Neuropsychologia.

[95]  Stephen M. Rao,et al.  Specialized Neural Systems Underlying Representations of Sequential Movements , 2000, Journal of Cognitive Neuroscience.

[96]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[97]  G. Rizzolatti,et al.  Cortico-cortical connections of two electrophysiologically identified arm representations in the mesial agranular frontal cortex , 2004, Experimental Brain Research.

[98]  Karl J. Friston,et al.  Event-related fMRI , 1997 .

[99]  M Hallett,et al.  Self-paced versus metronome-paced finger movements. A positron emission tomography study. , 1997, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[100]  K Ugurbil,et al.  Activation of visuomotor systems during visually guided movements: a functional MRI study. , 1998, Journal of magnetic resonance.

[101]  R. Passingham,et al.  SUPPLEMENTARY MOTOR CORTEX AND SELF-INITIATED MOVEMENT , 1989 .

[102]  Karl J. Friston,et al.  Characterizing Stimulus–Response Functions Using Nonlinear Regressors in Parametric fMRI Experiments , 1998, NeuroImage.

[103]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses , 1981, Behavioural Brain Research.

[104]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[105]  M. Nissen,et al.  Attentional requirements of learning: Evidence from performance measures , 1987, Cognitive Psychology.

[106]  P. Zhuang,et al.  Implicit and explicit learning in an auditory serial reaction time task , 1998, Acta neurologica Scandinavica.

[107]  J. Tanji,et al.  A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. , 1992, Journal of neurophysiology.

[108]  M. Sarter,et al.  The cognitive neuroscience of sustained attention: where top-down meets bottom-up , 2001, Brain Research Reviews.

[109]  J Kassubek,et al.  Brain imaging in a patient with hemimicropsia , 1999, Neuropsychologia.

[110]  D. Howard,et al.  Serial pattern learning by event observation. , 1992, Journal of experimental psychology. Learning, memory, and cognition.

[111]  J. Tanji,et al.  Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements , 1994, Neuroscience Research.

[112]  G. Rizzolatti,et al.  Corticocortical connections of area F3 (SMA‐proper) and area F6 (pre‐SMA) in the macaque monkey , 1993, The Journal of comparative neurology.

[113]  G. Rizzolatti,et al.  Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6aβ) , 2004, Experimental Brain Research.

[114]  M. Moscovitch,et al.  Attention and Performance 15: Conscious and Nonconscious Information Processing , 1994 .

[115]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 2004, Experimental Brain Research.

[116]  J. Tanji,et al.  The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. , 1993, Brain : a journal of neurology.

[117]  J. Tanji Sequential organization of multiple movements: involvement of cortical motor areas. , 2001, Annual review of neuroscience.

[118]  R. Passingham,et al.  The Time Course of Changes during Motor Sequence Learning: A Whole-Brain fMRI Study , 1998, NeuroImage.

[119]  D. V. von Cramon,et al.  Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. , 2001, Brain research. Cognitive brain research.

[120]  G. Barnes,et al.  Cerebral control of eye movements. II. Timing of anticipatory eye movements, predictive pursuit and phase errors in focal cerebral lesions. , 1996, Brain : a journal of neurology.

[121]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[122]  C. Gross,et al.  The effects of combined superior temporal polysensory area and frontal eye field lesions on eye movements in the macaque monkey , 1997, Behavioural Brain Research.

[123]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[124]  E. Renzi,et al.  Imitating gestures. A quantitative approach to ideomotor apraxia. , 1980, Archives of neurology.

[125]  Robert A. Jacobs,et al.  Motor timing learned without motor training , 2000, Nature Neuroscience.

[126]  W. Prinz,et al.  Motor learning enhances perceptual judgment: a case for action-perception transfer , 2001, Psychological research.

[127]  J. Sweeney,et al.  Cognitive functional magnetic resonance imaging at very-high-field: eye movement control. , 1999, Topics in magnetic resonance imaging : TMRI.

[128]  M. Wiesendanger,et al.  Sensory inputs to the agranular motor fields: a comparison between precentral, supplementary-motor and premotor areas in the monkey , 2004, Experimental Brain Research.