IRIS – Color Texture Indexing and Recognition Toolbox

This paper presents an open-system approach to color texture recognition and retrieval. Several new compact texture descriptors are used in order to achieve a good recognition and retrieval performance. The IRIS system is an easy-to-use, user-friendly Matlab toolbox, which allows the user to browse image databases according to different paradigms. Indexing terms color texture description, color image retrieval, ornamental stones description, retrieval toolbox

[1]  Berens,et al.  A statistical image of colour space , 1999 .

[2]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[3]  Ramin Zabih,et al.  Histogram refinement for content-based image retrieval , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[4]  Robert M. Hawlick Statistical and Structural Approaches to Texture , 1979 .

[5]  Ramesh Jain,et al.  Storage and Retrieval for Still Image and Video Databases IV , 1996 .

[6]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[7]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[8]  Markus A. Stricker,et al.  Color indexing with weak spatial constraints , 1996, Electronic Imaging.

[9]  Markus A. Stricker Bounds for the discrimination power of color indexing techniques , 1994, Electronic Imaging.

[10]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Mary M. Galloway,et al.  Texture analysis using gray level run lengths , 1974 .

[12]  Aleksandra Mojsilovic,et al.  The vocabulary and grammar of color patterns , 2000, IEEE Trans. Image Process..

[13]  Georgios S. Paschos,et al.  Fast color texture recognition using chromaticity moments , 2000, Pattern Recognit. Lett..

[14]  Jing Huang,et al.  Spatial Color Indexing and Applications , 2004, International Journal of Computer Vision.

[15]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[16]  Nozha Boujemaa,et al.  Upgrading Color Distributions for Image Retrieval: Can We Do Better? , 2000, VISUAL.

[17]  R.J. Safranek,et al.  Perceptually based color texture features and metrics for image retrieval , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[18]  Nozha Boujemaa,et al.  Region Queries without Segmentation for Image Retrieval by Content , 1999, VISUAL.