Modeling the MagnetoencephaloGram (MEG) Of Epileptic Patients Using Genetic Programming and Minimizing the Derived Models Using Genetic Algorithms

In this paper, a variation of traditional Genetic Programming(GP) is used to model the MagnetoencephaloGram(MEG) of Epileptic Patients. This variation is Linear Genetic Programming(LGP). LGP is a particular subset of GP wherein computer programs in population are represented as a sequence of instructions from imperative programming language or machine language. The derived models from this method were simplified using genetic algorithms. The proposed method was used to model the MEG signal of epileptic patients using 6 different datasets. Each dataset uses different number of previous values of MEG to predict the next value. The models were tested in datasets different from the ones which were used to produce them and the results were very promising.