Brain Neuron Network Extraction and Analysis of Live Mice from Imaging Videos

Modernbrainmappingtechniquesareproducingincreasinglylargedatasetsofanatomicalorfunctional connectionpatterns.Recently,itbecamepossibletorecorddetailedliveimagingvideosofmammal brainwhilethesubjectisengagingroutineactivity.Weanalyzevideosrecordedfromtenmiceto describehowtodetectneurons,extractneuronsignals,mapcorrelationofneuronsignalstomice activity,detectthenetworktopologyofactiveneurons,andanalyzenetworktopologycharacteristics. Weproposeaneuronpositionalignmentmethodtocompensatethedistortionandmovementofcerebral cortexinlivemousebrainandthebackgroundluminancecompensationtoextractandmodelneuron activity.Tofindoutthenetworktopology,across-correlationbasedmethodandacausalBayesian networkmethodareproposedandusedforanalysis.Afterwards,wedidpreliminaryanalysison networktopologies.Thesignificanceofthispaperisonhowtoextractneuronactivitiesfromlive mousebrainimagingvideosandanetworkanalysismethodtoanalyzeitstopology. KEywoRDS Brain Neuron Activity, Clustering, Network Analysis, Neuron Image Processing, Small-World Property

[1]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[2]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[3]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[4]  Faïez Gargouri,et al.  Improving algorithms for structure learning in Bayesian Networks using a new implicit score , 2010, Expert Syst. Appl..

[5]  Rodrigo Quian Quiroga,et al.  Nonlinear multivariate analysis of neurophysiological signals , 2005, Progress in Neurobiology.

[6]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[7]  Ashique Mahmood,et al.  Structure Learning of Causal Bayesian Networks: A Survey , 2011 .

[8]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[9]  Carl T. Bergstrom,et al.  The map equation , 2009, 0906.1405.

[10]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[11]  K. Gurney,et al.  Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence , 2008, PloS one.

[12]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[13]  R. Flink,et al.  Intraoperative electrocorticography in epilepsy surgery: useful or not? , 2003, Seizure.

[14]  M. Kramer,et al.  Emergent network topology at seizure onset in humans , 2008, Epilepsy Research.

[15]  Efstathios D. Gennatas,et al.  Predicting Regional Neurodegeneration from the Healthy Brain Functional Connectome , 2012, Neuron.

[16]  Rafael Yuste,et al.  The new century of the brain. , 2014, Scientific American.

[17]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[18]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[19]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[20]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[21]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[22]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[23]  Olaf Sporns,et al.  From simple graphs to the connectome: Networks in neuroimaging , 2012, NeuroImage.

[24]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[25]  Peter Spirtes,et al.  Detecting Causal Relations in the Presence of Unmeasured Variables , 1991, UAI.

[26]  V. Menon Large-scale brain networks and psychopathology: a unifying triple network model , 2011, Trends in Cognitive Sciences.