Ab initio study of magneto-ionic mechanisms in ferromagnet/oxide multilayers

The application of gate voltages in heavy metal/ferromagnet/Oxide multilayer stacks has been identified as one possible candidate to manipulate their anisotropy at will. However, this method has proven to show a wide variety of behaviours in terms of reversibility, depending on the nature of the metal/oxide interface and its degree of oxidation. In order to shed light on the microscopic mechanism governing the complex magneto-ionic behaviour in $\text{Ta/CoFeB/}\text{HfO}_2$, we perform ab-initio simulations on various setups comprising $\text{Fe/O, Fe/HfO}_2$ interfaces with different oxygen atom interfacial geometries. After the determination of the more stable interfacial configurations, we calculate the magnetic anisotropy energy on the different unit cell configurations and formulate a possible mechanism that well describes the recent experimental observations in $\text{Ta/CoFeB/}\text{HfO}_2$.

[1]  G. Durin,et al.  Multiple Magnetoionic Regimes in Ta/Co20Fe60B20/HfO2 , 2021, 2105.05988.

[2]  B. Diény,et al.  Route towards efficient magnetization reversal driven by voltage control of magnetic anisotropy , 2021, Scientific Reports.

[3]  S. Pizzini,et al.  Reversible and Irreversible Voltage Manipulation of Interfacial Magnetic Anisotropy in Pt / Co /Oxide Multilayers , 2020, Physical Review Applied.

[4]  R. Guo,et al.  Perpendicular Magnetic Anisotropy and Dzyaloshinskii-Moriya Interaction at an Oxide/Ferromagnetic Metal Interface. , 2020, Physical review letters.

[5]  Kang L. Wang,et al.  High voltage-controlled magnetic anisotropy and interface magnetoelectric effect in sputtered multilayers annealed at high temperatures , 2020 .

[6]  Yoshishige Suzuki,et al.  Voltage-controlled magnetic anisotropy and Dzyaloshinskii−Moriya interactions in CoNi/MgO and CoNi/Pd/MgO , 2019, Japanese Journal of Applied Physics.

[7]  S. Heinze,et al.  Comparison of first-principles methods to extract magnetic parameters in ultrathin films: Co/Pt(111) , 2019, Physical Review B.

[8]  F. Djurabekova,et al.  Atomistic behavior of metal surfaces under high electric fields , 2018, Physical Review B.

[9]  Wei Wang,et al.  Studies on the Effect of Nano-Sized MgO in Magnesium-Ion Conducting Gel Polymer Electrolyte for Rechargeable Magnesium Batteries , 2017 .

[10]  B. Diény,et al.  Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications , 2017 .

[11]  R. Waser,et al.  Ion migration in crystalline and amorphous HfO X , 2017 .

[12]  B. Diény,et al.  Anatomy of electric field control of perpendicular magnetic anisotropy at Fe/MgO interfaces , 2016 .

[13]  G. Bihlmayer,et al.  Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films , 2015, Scientific Reports.

[14]  Uwe Bauer,et al.  Magneto-ionic control of interfacial magnetism. , 2014, Nature materials.

[15]  T. Liu,et al.  Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy , 2014, Scientific Reports.

[16]  P. Renucci,et al.  Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector , 2014, 1404.4527.

[17]  N. Setter,et al.  Ferroelectric control of magnetic domains in ultra-thin cobalt layers , 2013 .

[18]  B. Diény,et al.  Anatomy of perpendicular magnetic anisotropy in Fe/MgO magnetic tunnel junctions: First-principles insight , 2013, 1308.2909.

[19]  B. Diény,et al.  First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces , 2010, 1011.5667.

[20]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[21]  Chun-Gang Duan,et al.  Electric field effect on magnetization at the Fe/MgO(001) interface , 2010 .

[22]  G. Bihlmayer,et al.  Describing Dzyaloshinskii–Moriya spirals from first principles , 2009 .

[23]  Jürgen Hafner,et al.  Density-functional theory of the magnetic anisotropy of nanostructures: an assessment of different approximations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  W. Butler,et al.  Tunneling magnetoresistance from a symmetry filtering effect , 2008, Science and technology of advanced materials.

[25]  H. Ebert,et al.  Magnetic anisotropy of thin Fe films on GaAs , 2005 .

[26]  Bernard Rodmacq,et al.  Crossover from in-plane to perpendicular anisotropy in Pt/CoFe/AlOx sandwiches as a function of Al oxidation: A very accurate control of the oxidation of tunnel barriers , 2002 .

[27]  O. Eriksson,et al.  First Principles Theory of Magnetocrystalline Anisotropy , 2000 .

[28]  G. Laan Microscopic origin of magnetocrystalline anisotropy in transition metal thin films , 1998 .

[29]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[30]  A. Freeman,et al.  Validity of the force theorem for magnetocrystalline anisotropy , 1996 .

[31]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[32]  Watson,et al.  Total-energy differences and eigenvalue sums. , 1985, Physical review. B, Condensed matter.

[33]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[34]  P. Ziherl,et al.  Transport Phenomena , 2019, Solved Problems in Thermodynamics and Statistical Physics.

[35]  Shufeng Zhang Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions , 1999 .

[36]  P. Bruno,et al.  Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. , 1989, Physical review. B, Condensed matter.