H2 Norm of Fractional Differential Systems

The H2 norm, or the impulse response energy, of fractional differential explicit systems is computed, and complements Astrom’s algebraic formula for classical rational systems.

[1]  A. Oustaloup La dérivation non entière , 1995 .

[2]  Alain Oustaloup,et al.  Numerical Simulations of Fractional Systems , 2003 .

[3]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[4]  Alain Oustaloup,et al.  Non Integer Model from Modal Decomposition for Time Domain System Identification , 2000 .

[5]  Henry E. Fettis,et al.  Erratum: Tables of integral transforms. Vol. I, II (McGraw-Hill, New York, 1954) by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1973 .

[6]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[7]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[8]  D. Matignon Representations en variables d'etat de modeles de guides d'ondes avec derivation fractionnaire , 1994 .

[9]  A. Oustaloup,et al.  Complex-fractional systems: Modal decomposition and stability condition , 2001, 2001 European Control Conference (ECC).

[10]  E. Karden,et al.  A method for measurement and interpretation of impedance spectra for industrial batteries , 2000 .

[11]  Alain Oustaloup,et al.  ENERGY OF FRACTIONAL ORDER TRANSFER FUNCTIONS , 2002 .

[12]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[13]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[14]  A. Oustaloup Systèmes asservis linéaires d'ordre fractionnaire : théorie et pratique , 1983 .