Review of multinomial and multiattribute quality control charts

Attribute control charts are very useful nowadays for monitoring processes where the quality characteristics cannot be measured in a continuous scale, which may be manufacturing processes from industrial settings, health-care processes or processes from service industries and environments of non-manufacturing quality-improvement efforts. Many of the above cases, however, involve the monitoring of multiple attributes simultaneously, thus leading to the case of multinomial and multiattribute quality control methods, which are better than the simultaneous use of multiple uni-attribute methods. In this study, an attempt to review the research previously conducted on multiattribute quality control is made in order to help the interested researchers and practitioners get informed about the references on the relevant research in this field, regarding the design, performance and applications of multiattribute control charts. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Tzvi Raz,et al.  On the construction of control charts using linguistic variables , 1990 .

[2]  Cengiz Kahraman,et al.  Development of fuzzy process control charts and fuzzy unnatural pattern analyses , 2006, Comput. Stat. Data Anal..

[3]  Bernard Grabot Objective satisfaction assessment using neural nets for balancing multiple objectives , 1998 .

[4]  Dan A. Ralescu,et al.  Overview on the development of fuzzy random variables , 2006, Fuzzy Sets Syst..

[5]  Da Ruan,et al.  α‐Cut fuzzy control charts for linguistic data , 2004, Int. J. Intell. Syst..

[6]  Hiroshi Ohta,et al.  Control charts for process average and variability based on linguistic data , 1993 .

[7]  Thong Ngee Goh,et al.  CONTROL CHART FOR MULTIVARIATE ATTRIBUTE PROCESSES , 1998 .

[8]  R. N. Rattihalli,et al.  Modified Group Runs Control Charts to Detect Increases in Fraction Non Conforming and Shifts in the Process Mean , 2006 .

[9]  Stefan H. Steiner,et al.  Control charts based on grouped observations , 1994 .

[10]  Da Ruan,et al.  a-Cut fuzzy control charts for linguistic data , 2004 .

[11]  William H. Woodall,et al.  Control Charts Based on Attribute Data: Bibliography and Review , 1997 .

[12]  Hassen Taleb,et al.  Fuzzy Multinomial Control Charts , 2005, AI*IA.

[13]  Francisco Herrera,et al.  A 2-tuple fuzzy linguistic representation model for computing with words , 2000, IEEE Trans. Fuzzy Syst..

[14]  Jye-Chyi Lu,et al.  Multivariate zero-inflated Poisson models and their applications , 1999 .

[15]  Douglas C. Montgomery,et al.  Filtering and smoothing methods for mixed particle count distributions , 2002 .

[16]  L. S. Ganesh,et al.  An empirical analysis of the use of the Analytic Hierarchy Process for estimating membership values in a fuzzy set , 1996, Fuzzy Sets Syst..

[17]  Yoav Benjamini,et al.  Multivariate Profile Charts for Statistical Process Control , 1994 .

[18]  Lloyd S. Nelson Column: Technical Aids: A Chi-Square Control Chart for Several Proportions , 1987 .

[19]  Heung Suk Hwang Web-based multi-attribute analysis model for engineering project evaluation , 2004, Comput. Ind. Eng..

[20]  Patrick D. Bourke,et al.  Detecting a shift in fraction nonconforming using runlength control charts with 100% inspection , 1991 .

[21]  Joel K. Jolayemi,et al.  Statistical design of np-charts with multiple control regions , 2002 .

[22]  W. Woodall,et al.  A probabilistic and statistical view of fuzzy methods , 1995 .

[23]  Kwok-Leung Tsui,et al.  A Review of Statistical and Fuzzy Quality Control Charts Based on Categorical Data , 1997 .

[24]  George O. Wesolowsky,et al.  Grouped data-sequential probability ratio tests and cumulative sum control charts , 1996 .

[25]  Paul H. Kvam,et al.  Discrete Predictive Analysis in Probabilistic Safety Assessment , 2002 .

[26]  R J Cook,et al.  Monitoring paired binary surgical outcomes using cumulative sum charts. , 1999, Statistics in medicine.

[27]  William H. Woodall,et al.  The Use of Control Charts in Health-Care and Public-Health Surveillance , 2006 .

[28]  Isaac N. Gibra Economically Optimal Determination of the Parameters of np-Control Charts , 1978 .

[29]  J. W. Schmidt,et al.  Economic Multiattribute Acceptance Sampling , 1972 .

[30]  Z. S. Xu,et al.  An overview of operators for aggregating information , 2003, Int. J. Intell. Syst..

[31]  Chung-Hsing Yeh,et al.  Task oriented weighting in multi-criteria analysis , 1999, Eur. J. Oper. Res..

[32]  Lloyd S. Nelson,et al.  Control Chart for Multiple Stream Processes , 1986 .

[33]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[34]  Francisco Herrera,et al.  An Approach for Combining Linguistic and Numerical Information Based on the 2-Tuple Fuzzy Linguistic Representation Model in Decision-Making , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[35]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[36]  Francisco Herrera,et al.  Linguistic modeling with hierarchical systems of weighted linguistic rules , 2003, Int. J. Approx. Reason..

[37]  Irving W. Burr,et al.  Three Class Attributes Plans in Acceptance Sampling , 1973 .

[38]  Harold J. Steudel,et al.  An Empirical Indicator of Product Appearance for Process Control , 2003 .

[39]  Fiorenzo Franceschini,et al.  Ordered Samples Control Charts for Ordinal Variables , 2005 .

[40]  George O. Wesolowsky,et al.  Optimal SPRT and CUSUM procedures with compressed-limit gauges , 1996 .

[41]  William H. Woodall,et al.  Exact Properties of Demerit Control Charts , 1999 .

[42]  Seyed Taghi Akhavan Niaki,et al.  Detection and classification mean-shifts in multi-attribute processes by artificial neural networks , 2008 .

[43]  Douglas C. Montgomery,et al.  Generalized Linear Model‐based Control Charts for Discrete Semiconductor Process Data , 2004 .

[44]  José L. Verdegay,et al.  On aggregation operations of linguistic labels , 1993, Int. J. Intell. Syst..

[45]  Peter R. Nelson,et al.  Runs tests for group control charts , 1996 .

[46]  M. Marcucci MONITORING MULTINOMIAL PROCESSES , 1985 .

[47]  Joachim Kunert,et al.  A multinomial model for the quality control of colony counting procedures , 2000 .

[48]  Patrick Meyer,et al.  Sorting multi-attribute alternatives: The TOMASO method , 2005, Comput. Oper. Res..

[49]  T. Raz,et al.  Probabilistic and membership approaches in the construction of control charts for linguistic data , 1990 .

[50]  Seyed Taghi Akhavan Niaki,et al.  Skewness Reduction Approach in Multi-Attribute Process Monitoring , 2007 .

[51]  P W Smith,et al.  Association models for a multivariate binary response. , 2000, Biometrics.

[52]  Kwok-Leung Tsui,et al.  A Control Chart Method for Ordinal Data , 2002 .

[53]  Alireza Faraz,et al.  Fuzzy Control Chart A Better Alternative for Shewhart Average Chart , 2007 .

[54]  John C. Young,et al.  A Practical Approach for Interpreting Multivariate T2 Control Chart Signals , 1997 .

[55]  R. N. Rattihalli,et al.  Some Group Inspection Based Multi-Attribute Control Charts to Identify Process Deterioration , 2005 .

[56]  Gyutai Kim,et al.  Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement , 1997 .

[57]  Gloria Bordogna,et al.  Modeling linguistic qualifiers of uncertainty in a fuzzy database , 2000 .

[58]  Timothy M. Young,et al.  Multivariate control charts of MDF and OSB vertical density profile attributes , 1999 .

[59]  Nader Ebrahimi,et al.  Information theoretic framework for process control , 1998, Eur. J. Oper. Res..

[60]  W. L. Stevens,et al.  Control by Gauging , 1948 .

[61]  Shaul P. Ladany,et al.  Curtailment of artificial attribute sampling plans , 1985 .

[62]  Joel K. Jolayemi An optimal design of multiattribute control charts for processes subject to a multiplicity of assignable causes , 2000, Appl. Math. Comput..

[63]  Andrea Rangone,et al.  A reference framework for the application of MADM fuzzy techniques to selecting AMTS , 1998 .

[64]  G. Geoffrey Vining,et al.  Multi-Level Sampling Interval Approach to Control Charts , 1997 .

[65]  Mooyoung Jung,et al.  Satisfaction assessment of multi-objective schedules using neural fuzzy methodology , 2003 .

[66]  Olgierd Hryniewicz,et al.  Statistics with fuzzy data in statistical quality control , 2007, Soft Comput..

[67]  R. N. Rattihalli,et al.  Exact Multi-attribute Acceptance Single Sampling Plan , 2005 .

[68]  Thong Ngee Goh,et al.  Data transformation for geometrically distributed quality characteristics , 2000 .

[69]  J Harris On the correlation of statistical and automatic process control , 2003 .

[70]  Zeshui Xu,et al.  Extended IOWG Operator and its Use in Group Decision Making Based on Multiplicative Linguistic Preference Relations , 2005 .

[71]  Kenneth E. Case,et al.  A Discrete Economic Multiattribute Acceptance Sampling , 1975 .

[72]  Eric Levrat,et al.  Subjective evaluation of car seat comfort with fuzzy set techniques , 1997 .

[73]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[74]  Douglas C. Montgomery,et al.  Process monitoring for multiple count data using generalized linear model-based control charts , 2003 .

[75]  Joel K. Jolayemi A unified approximation scheme for the convolution of independent binomial variables , 1992 .

[76]  Cengiz Kahraman,et al.  An alternative approach to fuzzy control charts: Direct fuzzy approach , 2007, Inf. Sci..

[77]  R. N. Rattihalli,et al.  LIKELIHOOD RATIO BASED MULTI-ATTRIBUTE CONTROL CHART , 2005 .

[78]  Satterthwaite Fe An approximate distribution of estimates of variance components. , 1946 .

[79]  J. Chiu,et al.  Attribute Control Chart for Multivariate Poisson Distribution , 2007 .

[80]  Chin-Yao Low,et al.  Design for an SPRT control scheme based on linguistic data , 2003 .

[81]  Arup Ranjan Mukhopadhyay,et al.  Multivariate attribute control chart using Mahalanobis D2 statistic , 2008 .

[82]  George C. Runger,et al.  Statistical Process Control of Multiple Stream Processes , 1995 .

[83]  George W. Sturm,et al.  Process monitoring in real time : empirical bayes approach―discrete case , 1991 .

[84]  Jonathan Lawry,et al.  A framework for linguistic modelling , 2004, Artif. Intell..

[85]  Shaul P. Ladany Determination of Optimal Compressed Limit Gaging Sampling Plans , 1976 .

[86]  Sheng-Tsaing Tseng,et al.  CARRYOVER EFFECTS IN MULTI-ATTRIBUTE INSPECTION , 1999 .

[87]  Douglas C. Montgomery,et al.  A review of multivariate control charts , 1995 .

[88]  H. I. Patel QUALITY CONTROL METHODS FOR MULTIVARIATE BINOMIAL AND POISSON DISTRIBUTIONS , 1973 .

[89]  Olgierd Hryniewicz,et al.  Soft methods in statistical quality control , 2000 .

[90]  N. Beaumont,et al.  Technology, manufacturing performance and business performance amongst Australian manufacturers , 1997 .

[91]  T. Speevak,et al.  Multiple attributes sampling acceptance plans involving destruction testing , 1987 .

[92]  Reha Uzsoy,et al.  Evaluation and comparison of production schedules , 2000 .

[93]  Peter Wludyka,et al.  RUNS RULES AND P-CHARTS FOR MULTISTREAM BINOMIAL PROCESSES , 2002 .

[94]  K. Hirota,et al.  Multivariate Fuzzy Multinomial Control Charts , 2006 .

[95]  Babak Abbasi,et al.  On the monitoring of multi-attributes high-quality production processes , 2007 .

[96]  Z. S. Xu,et al.  Eowa And Eowg Operators For Aggregating Linguistic Labels Based On Linguistic Preference Relations , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[97]  Joel K. Jolayemi Convolution of independent binomial variables: an approximation method and a comparative study , 1994 .

[98]  Hassen Taleb,et al.  On fuzzy and probabilistic control charts , 2002 .

[99]  Fiorenzo Franceschini,et al.  CONTROL CHART FOR LINGUISTIC VARIABLES : A METHOD BASED ON THE USE OF LINGUISTIC QUANTIFIERS , 1999 .

[100]  Jyh-Jen Horng Shiau,et al.  An Empirical Bayes Process Monitoring Technique for Polytomous Data , 2005 .

[101]  Heung-Suk Hwang,et al.  R&D project evaluation model based on fuzzy set priority , 1998 .

[102]  Seyed Taghi Akhavan Niaki,et al.  Bootstrap method approach in designing multi-attribute control charts , 2007 .

[103]  Min-Chia Wang,et al.  The application of control chart for defects and defect clustering in IC manufacturing based on fuzzy theory , 2007, Expert Syst. Appl..

[104]  Wei Wang,et al.  Risk and confidence analysis for fuzzy multicriteria decision making , 2006, Knowl. Based Syst..

[105]  Fritz Klocke,et al.  Evaluating alternative production cycles using the extended fuzzy AHP method , 1997, Eur. J. Oper. Res..