Global Illumination for Interactive Applications and High-Quality Animations

One of the main obstacles to the use of global illumination in image synthesis industry is the considerable amount of time needed to compute the lighting for a single image. Until now, this computational cost has prevented its widespread use in interactive design applications as well as in computer animations. Several algorithms have been proposed to address these issues. In this report, we present a much needed survey and classification of the most up-to-date of these methods. Roughly, two families of algorithms can be distinguished. The first one aims at providing interactive feedback for lighting design applications. The second one gives higher priority to the quality of results, and therefore relies on offline computations. Recently, impressive advances have been made in both categories. Indeed, with the steady progress of computing resources and graphics hardware, and the current trend of new algorithms for animated scenes, common use of global illumination seems closer than ever.

[1]  Philipp Slusallek,et al.  Interactive Global Illumination , 2002 .

[2]  Yves D. Willems,et al.  Error Control for Radiosity , 1996, Rendering Techniques.

[3]  George Drettakis,et al.  Efficient Glossy Global Illumination with Interactive Viewing , 1999, Comput. Graph. Forum.

[4]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[5]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[6]  Wilfried Osberger,et al.  Perceptual vision models for picture quality assessment and compression applications , 1999 .

[7]  Holly E. Rushmeier,et al.  Implementation and Analysis of an Image-Based Global Illumination Framework for Animated Environments , 1996, IEEE Trans. Vis. Comput. Graph..

[8]  Markus Wagner,et al.  Interactive Distributed Ray Tracing of Highly Complex Models , 2001, Rendering Techniques.

[9]  Scott J. Daly,et al.  Visible differences predictor: an algorithm for the assessment of image fidelity , 1992, Electronic Imaging.

[10]  François X. Sillion Clustering and Volume Scattering for Hierarchical Radiosity Calculations , 1995 .

[11]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[12]  Hans-Peter Seidel,et al.  Unified Approach to Prefiltered Environment Maps , 2000, Rendering Techniques.

[13]  Hans-Peter Seidel,et al.  Interactive Global Illumination using Selective Photon Tracing , 2002, Rendering Techniques.

[14]  Donald P. Greenberg,et al.  Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments , 2005, TOGS.

[15]  Mateu Sbert,et al.  Hierarchical Monte Carlo Radiosity , 1998, Rendering Techniques.

[16]  Henry Fuchs,et al.  Frameless rendering: double buffering considered harmful , 1994, SIGGRAPH.

[17]  George Drettakis,et al.  Interactive update of global illumination using a line-space hierarchy , 1997, SIGGRAPH.

[18]  Hans-Peter Seidel,et al.  Perception-guided global illumination solution for animation rendering , 2001, SIGGRAPH.

[19]  François X. Sillion,et al.  Space‐Time Hierarchical Radiosity with Clustering and Higher‐Order Wavelets , 2004, Comput. Graph. Forum.

[20]  Holly E. Rushmeier,et al.  Tone reproduction for realistic images , 1993, IEEE Computer Graphics and Applications.

[21]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[22]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[23]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[24]  George Drettakis,et al.  Incremental Updates for Rapid Glossy Global Illumination , 2001, Comput. Graph. Forum.

[25]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[26]  Dani Lischinski,et al.  Combining hierarchical radiosity and discontinuity meshing , 1993, SIGGRAPH.

[27]  Donald P. Greenberg,et al.  Toward a psychophysically-based light reflection model for image synthesis , 2000, SIGGRAPH.

[28]  Donald P. Greenberg,et al.  Interactive global illumination in dynamic scenes , 2002, SIGGRAPH.

[29]  Wolfgang Heidrich,et al.  Interleaved Sampling , 2001, Rendering Techniques.

[30]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[31]  Shenchang Eric Chen,et al.  Incremental radiosity: an extension of progressive radiosity to an interactive image synthesis system , 1990, SIGGRAPH.

[32]  Charles D. Hansen,et al.  Towards Interactive Photorealistic Rendering of Indoor Scenes: A Hybrid Approach , 1999, Rendering Techniques.

[33]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[34]  François X. Sillion,et al.  Space-Time Hierarchical Radiosity , 1999, Rendering Techniques.

[35]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[36]  Alexander Keller Quasi-Monte Carlo Radiosity , 1996, Rendering Techniques.

[37]  Donald P. Greenberg,et al.  Radiosity redistribution for dynamic environments , 1990, IEEE Computer Graphics and Applications.

[38]  Frank Schöffel,et al.  Reducing Memory Requirements for Interactive Radiosity using Movement Prediction , 1999, Rendering Techniques.

[39]  Henry Fuchs,et al.  Image rendering by adaptive refinement , 1986, SIGGRAPH.

[40]  Mateu Sbert,et al.  The Multi-Frame Lighting Method: A Monte Carlo Based Solution for Radiosity in Dynamic Environments , 1996, Rendering Techniques.

[41]  Xavier Pueyo,et al.  Frame-to-Frame Coherent Animation with Two-Pass Radiosity , 2003, IEEE Trans. Vis. Comput. Graph..

[42]  Philip J. Corriveau,et al.  Video quality experts group: the quest for valid objective methods , 2000, Electronic Imaging.

[43]  David Salesin,et al.  Global illumination of glossy environments using wavelets and importance , 1996, TOGS.

[44]  Marc Olano,et al.  Reflection space image based rendering , 1999, SIGGRAPH.

[45]  Norman I. Badler,et al.  Multi-pass pipeline rendering: realism for dynamic environments , 1997, SI3D.

[46]  George Drettakis,et al.  Interactive Rendering using the Render Cache , 1999, Rendering Techniques.

[47]  Donald P. Greenberg,et al.  Density Estimation Techniques fro Global Illumination , 1998 .

[48]  Roger J. Hubbold,et al.  Perceptually‐Driven Radiosity , 1997, Comput. Graph. Forum.

[49]  Karol Myszkowski,et al.  Using the visual differences predictor to improve performance of progressive global illumination computation , 2000, TOGS.

[50]  Hans-Peter Seidel,et al.  Thrifty Final Gather for Radiosity , 2001, Rendering Techniques.

[51]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[52]  James Arvo,et al.  A clustering algorithm for radiosity in complex environments , 1994, SIGGRAPH.

[53]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[54]  Karol Myszkowski,et al.  Perceptually-Informed Accelerated Rendering of High Quality Walkthrough Sequences , 1999, Rendering Techniques.

[55]  Hans-Peter Seidel,et al.  Perceptually Guided Corrective Splatting , 2001, Comput. Graph. Forum.

[56]  Paul S. Heckbert Adaptive radiosity textures for bidirectional ray tracing , 1990, SIGGRAPH.

[57]  Xavier Pueyo,et al.  Radiosity for dynamic environments , 1997 .

[58]  Erin Shaw Hierarchical Radiosity for Dynamic Environments , 1997, Comput. Graph. Forum.

[59]  Xavier Pueyo,et al.  Animating radiosity environments through the Multi-Frame Lighting Method , 2001, Comput. Animat. Virtual Worlds.

[60]  Wolfgang Heidrich,et al.  Interactive Display of Global Illumination Solutions for Non‐diffuse Environments – A Survey , 2001, Comput. Graph. Forum.

[61]  George Drettakis,et al.  Fast Global Illumination Including Specular Effects , 2000, Rendering Techniques.

[62]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1998 .

[63]  David Forsyth,et al.  Efficient Radiosity in Dynamic Environments , 1995 .

[64]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.

[65]  François X. Sillion,et al.  Efficient Parallel Refinement for Hierarchical Radiosity on a DSM computer , 2000 .

[66]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[67]  Hans-Peter Seidel,et al.  Grid Based Final Gather for Radiosity on Complex Clustered Scenes , 2002, Comput. Graph. Forum.

[68]  George Drettakis,et al.  Enhancing and Optimizing the Render Cache , 2002, Rendering Techniques.

[69]  Donald P. Greenberg,et al.  A model of visual masking for computer graphics , 1997, SIGGRAPH.

[70]  Gregory J. Ward,et al.  The RADIANCE lighting simulation and rendering system , 1994, SIGGRAPH.

[71]  Frank Schöffel,et al.  Fast Radiosity Repropagation For Interactive Virtual Environments Using A Shadow-Form-Factor-List , 1995 .

[72]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[73]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[74]  Cyrille Damez Simulation globale de l'éclairage pour des séquences animées prenant en en compte la cohérence temporelle. (Global illumination for animated scenes taking advantage of temporal) , 2001 .

[75]  Paul Diefenbach,et al.  Pipeline rendering: interaction and realism through hardware-based multi-pass rendering , 1996 .