Global Launcher Trajectory Optimization for Lunar Base Settlement

The problem of a mission to the Moon to set a permanent outpost can be tackled by dividing the journey into three phases: the Earth ascent, the Earth-Moon transfer and the lunar landing. In this paper we present an optimization analysis of Earth ascent trajectories of existing launch vehicles injected into a Low Earth parking orbit. The trajectories are optimized in the neighborhood of a reference guidance profile. The optimization problem is tackled by using a global method, and a single and multiobjective Particle Swarm Optimization algorithm serve the purpose. The final LEO payload mass is the objective function of the single-objective runs. Path constraints and final orbital elements are used as constraints in the process. However, in the multi-objective optimizations, these constraints are used as objectives together with the payload mass. The launchers' mechanical and thermal constraints, and the launch-sites azimuth constraint are taken into account. It is found that the highest payload masses are achieved by Ariane-5 ESC-A, Atlas V 552 and Proton M, with 25, 24 and 23 tons respectively. Such values, together with the use of all the three launchers and a tight schedule, would permit to build a base in 4.5 years. However, a manned launch vehicle is needed in order to guarantee the assembly and sup- port during the building phase. Also, the dedicated development of a heavy-lift launcher will greatly benefit the moon-base construction.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  Thomas O. Seppelin,et al.  The Department of Defense World Geodetic System 1972 , 1974 .

[4]  William J. Kosmann,et al.  A Recommended Lunar Exploration Architecture , 2006 .

[5]  K. Hamera,et al.  An Evolvable Lunar Communication and Navigation Constellation Concept , 2008, 2008 IEEE Aerospace Conference.

[6]  Albert Walter Markl An initial guess generator for launch and reentry vehicle trajectory optimization , 2001 .

[7]  James Fincannon,et al.  Characterization of Lunar Polar Illumination from a Power System Perspective , 2008 .

[8]  Todd J. Mosher,et al.  Returning to the Moon at a Modest Cost: The Shackleton Mission , 2004 .

[9]  M. Eskenazi,et al.  Ultralight, Compact, Deployable, High-Performance Solar Concentrator Array for Lunar Surface Power , 2006 .

[10]  Fred B. Oswald,et al.  Exploration Rover Concepts and Development Challenges , 2005 .

[11]  Peter Friedrich Gath,et al.  CAMTOS - a software suite combining direct and indirect trajectory optimization methods , 2002 .

[12]  Richard Brusch,et al.  Trajectory optimization for the Atlas/Centaur launch vehicle , 1977, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[13]  V. Zuccarelli,et al.  Earth-Moon Transfer Orbits , 2009 .

[14]  Nadia Nedjah,et al.  Multi-Objective Swarm Intelligent Systems - Theory & Experiences , 2010, Multi-Objective Swarm Intelligent Systems.

[15]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[16]  Wendell H. Chun,et al.  Lunar Surface Mobility , 2006 .

[17]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[18]  Erwin Mooij,et al.  Aerospace-plane flight dynamics: analysis of guidance and control concepts , 1998 .

[19]  K. Chung,et al.  Trajectory Design of Lunar South Pole -Aitken Basin Sample Return Mission , 2004 .

[20]  Nadia Nedjah,et al.  Swarm Intelligent Systems , 2006, Studies in Computational Intelligence.

[21]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[22]  Peter H. Zipfel,et al.  Modeling and Simulation of Aerospace Vehicle Dynamics , 2001 .

[23]  M. Roberts Inflatable habitation for the lunar base , 1992 .

[24]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[25]  George H. Born,et al.  A Lunar L2 Navigation, Communication, and Gravity Mission , 2006 .

[26]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[27]  Alan F. Murray,et al.  IEEE International Conference on Neural Networks , 1997 .

[28]  Kul B. Bhasin,et al.  Lunar Communication Terminals for NASA Exploration Missions: Needs, Operations Concepts and Architectures , 2008 .

[29]  Kriss J. Kennedy,et al.  Constellation Architecture Team-Lunar Habitation Concepts , 2008 .

[30]  Zbigniew Michalewicz,et al.  Genetic Algorithms for the 0/1 Knapsack Problem , 1994, ISMIS.

[31]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[32]  J. W. Cornelisse,et al.  Rocket propulsion and spaceflight dynamics , 1979 .

[33]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[34]  Frank M Perkins DERIVATION OF LINEAR-TANGENT STEERING LAWS , 1966 .

[35]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[36]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[37]  Martin J. L. Turner,et al.  Rocket and Spacecraft Propulsion: Principles, Practice and New Developments , 2000 .

[38]  Dean R Chapman,et al.  An approximate analytical method for studying entry into planetary atmospheres , 1958 .

[39]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[40]  Robert A. Luke Software design of 6DOF guidance approximations in 3DOF ascent simulations , 1993, Simul..

[41]  Steven J. Isakowitz,et al.  International Reference Guide to Space Launch Systems , 1991 .

[42]  R. L. Schultz,et al.  Aircraft performance optimization. , 1972 .

[43]  H. A. Watts,et al.  Solving Nonstiff Ordinary Differential Equations—The State of the Art , 1976 .

[44]  Robert L. Wright,et al.  Conceptual analysis of a lunar base transportation system , 1988 .

[45]  F. Regan,et al.  Dynamics of atmospheric re-entry , 1993 .

[46]  Daniel J. Lesieutre,et al.  High angle of attack missile aerodynamics including rotational rates - Program M3HAX , 1996 .

[47]  Kenneth J. Bocam,et al.  A Human Lunar Surface Base and Infrastructure Solution , 2006 .

[48]  K. H. Well Neighboring Vehicle Design for a Two-Stage LaunchVehicle , 2004 .

[49]  Edward F. Crawley,et al.  Analysis of Human Lunar Outpost Strategies and Architectures , 2007 .

[50]  S. Vadali,et al.  Touch Points in Optimal Ascent Trajectories with First-Order State Inequality Constraints , 1998 .

[51]  James D. Baker,et al.  Commercial cargo transport service for ISS , 2005 .

[52]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[53]  Steven R. Vukelich,et al.  Missile DATCOM. Volume 1 , 1988 .

[54]  Ethiraj Venkatapathy,et al.  Three-Dimensional Computational Analysis of Complex Launch Vehicle Configurations , 1996 .

[55]  K. Hamera,et al.  An Evolvable Lunar Communication and Navigation Constellation Architecture , 2008 .

[56]  Erwin Mooij,et al.  The motion of a vehicle in a planetary atmosphere , 1994 .

[57]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[58]  Ping Lu,et al.  Rapid Optimal Multiburn Ascent Planning and Guidance , 2007 .

[59]  Aravind Seshadri,et al.  A FAST ELITIST MULTIOBJECTIVE GENETIC ALGORITHM: NSGA-II , 2000 .

[60]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).