Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends

Abstract The primary aim of the present paper was to determine the variations over time (one year) in the main cementitious gels forming during the alkaline activation of hybrid cements (70% FA/30% OPC). The 28 and 365 day hydration products were characterised by different techniques. The findings showed that the C-S-H/N-A-S-H mix of gels precipitating did not precipitate in a pure state, but rather that their composition was affected by the presence of dissolved species. In the presence of aluminium C-S-H gel development was: C-S-H → C–(A)–S–H → C-A-S-H, whilst in the presence of calcium, N-A-S-H gel evolved as follows: N-A-S-H → (N,C)-A-S-H → C-A-S-H. This last conversion is not complete in these systems because the amount of calcium present is thought to be insufficient. On the grounds of the findings, a microstructural model is proposed to describe the development of the reaction products forming in these hybrid cements.

[1]  M. Ward,et al.  Effect of silica fume and fly ash on heat of hydration of Portland cement , 2002 .

[2]  M. Weil,et al.  The influence of calcium content on the structure and thermal performance of fly ash based geopolymers , 2007 .

[3]  A. Fernández-Jiménez,et al.  Opc-fly ash cementitious systems: study of gel binders produced during alkaline hydration , 2007 .

[4]  Ángel Palomo,et al.  An XRD Study of the Effect of the SiO2/Na2O Ratio on the Alkali Activation of Fly Ash , 2007 .

[5]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[6]  A. Nonat,et al.  Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions , 2009 .

[7]  Ángel Palomo,et al.  Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II , 2007 .

[8]  Á. Palomo,et al.  Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products , 2004 .

[9]  Á. Palomo,et al.  The role played by the reactive alumina content in the alkaline activation of fly ashes , 2006 .

[10]  C. Yip,et al.  Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder , 2003 .

[11]  Michael D.A. Thomas,et al.  Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete , 2002 .

[12]  I. Richardson,et al.  Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag , 1992 .

[13]  D. Macphee,et al.  Effect on Fresh C-S-H gels of the Simultaneous Addition of Alkali and Aluminium , 2010 .

[14]  P. Duxson,et al.  Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels , 2005 .

[15]  D. Michel,et al.  High-resolution solid-state NMR of silicates and zeolites , 1987 .

[16]  Á. Palomo,et al.  Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O , 2011 .

[17]  John L. Provis,et al.  Effect of Calcium Silicate Sources on Geopolymerisation , 2008 .

[18]  S. Diamond,et al.  Hydration Reactions in Cement Pastes Incorporating Fly Ash and Other Pozzolanic Materials , 1986 .

[19]  C. Poon,et al.  Degree of hydration and gel/space ratio of high-volume fly ash/cement systems , 2000 .

[20]  P. Rouxhet,et al.  Carbonation of the hydration products of tricalcium silicate , 1976 .

[21]  Kazusuke Kobayashi,et al.  Influence of alkali on carbonation of concrete, part 2 - Influence of alkali in cement on rate of carbonation of concrete - , 1990 .

[22]  I. Richardson,et al.  Microstructure and microanalysis of hardened ordinary Portland cement pastes , 1993 .

[23]  J. Duchesne,et al.  Measurement and prediction of portlandite solubility in alkali solutions , 1995 .

[24]  Á. Palomo,et al.  Effect of Calcium Additions on N-A-S-H Cementitious Gels , 2010 .

[25]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[26]  Della M. Roy,et al.  THE RETARDING EFFECTS OF FLY ASH UPON THE HYDRATION OF CEMENT PASTES: THE FIRST 24 HOURS , 1985 .

[27]  M. C. Sanz Nuevos materiales cementantes basados en la activación alcalina de cenizas volantes: caracterización de geles N-A-S-H en función del contenido de sílice soluble : efecto del Na2SO4 , 2007 .

[28]  Michael D.A. Thomas,et al.  Use of ternary cementitious systems containing silica fume and fly ash in concrete , 1999 .

[29]  J. Yarwood,et al.  Structural Features of C–S–H(I) and Its Carbonation in Air—A Raman Spectroscopic Study. Part II: Carbonated Phases , 2007 .

[30]  Á. Palomo,et al.  Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description , 2010 .

[31]  H. J. Jakobsen,et al.  Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy , 2004 .

[32]  H. Zanni,et al.  Aluminum Incorporation in Calcium Silicate Hydrates (C−S−H) Depending on Their Ca/Si Ratio , 1999 .

[33]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[34]  J. F. Young,et al.  The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples , 2006 .

[35]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[36]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[37]  H. J. Jakobsen,et al.  Characterization of calcium aluminate phases in cements by aluminum-27 MAS NMR spectroscopy , 1993 .

[38]  S. Martínez-Ramírez,et al.  OPC hydration with highly alkaline solutions , 2001 .

[39]  Wei Sun,et al.  Hydration of high-volume fly ash cement pastes , 2000 .

[40]  F. Glasser,et al.  Phase relations in the system CaOAl2O3SiO2H2O relevant to metakaolin - calcium hydroxide hydration , 1993 .

[41]  J. Deventer,et al.  Modeling Speciation in Highly Concentrated Alkaline Silicate Solutions , 2005 .

[42]  X. Cong,et al.  29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .

[43]  A. Xu,et al.  Microstructural Development in High‐Volume Fly‐Ash Cement System , 1994 .

[44]  Ángel Palomo,et al.  Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator , 2005 .

[45]  S. Alonso,et al.  Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures , 2001 .

[46]  I. Richardson The calcium silicate hydrates , 2008 .

[47]  M. Rowles,et al.  29Si, 27Al, 1H and 23Na MAS NMR Study of the Bonding Character in Aluminosilicate Inorganic Polymers , 2007 .

[48]  I. Richardson The nature of C-S-H in hardened cements , 1999 .

[49]  Á. Palomo,et al.  Characterisation of fly ashes. Potential reactivity as alkaline cements , 2003 .

[50]  Pichai Nimityongskul,et al.  Quick monitoring of pozzolanic reactivity of waste ashes. , 2009, Waste management.