The Value 4 of Binary Kloosterman Sums

Kloosterman sums have recently become the focus of much research, most notably due to their applications in cryptography and their relations to coding theory. Very recently Mesnager has showed that the value 4 of binary Kloosterman sums gives rise to several infinite classes of bent functions, hyper-bent functions and semi-bent functions in even dimension. In this paper we analyze the dierent strategies used to find zeros of binary Kloosterman sums to develop and implement an algorithm to find the value 4 of such sums. We then present experimental results showing that the value 4 of binary Kloosterman sums gives rise to bent functions for small dimensions, a case with no mathematical solution so far.

[1]  Guang Gong,et al.  Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.

[2]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[3]  Gregor Leander,et al.  Monomial bent functions , 2006, IEEE Transactions on Information Theory.

[4]  Sihem Mesnager A New Family of Hyper-Bent Boolean Functions in Polynomial Form , 2009, IMACC.

[5]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[6]  R. Harley,et al.  An extension of Satoh's algorithm and its implementation , 2000 .

[7]  Jrg Arndt,et al.  Matters Computational: Ideas, Algorithms, Source Code , 2010 .

[8]  Tor Helleseth,et al.  Divisibility properties of classical binary Kloosterman sums , 2009, Discret. Math..

[9]  F. Vercauteren,et al.  Computing Zeta Functions of Curves over Finite Fields , 2008 .

[10]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[11]  Tor Helleseth,et al.  On Z4-Linear Goethals Codes and Kloosterman Sums , 1999, Des. Codes Cryptogr..

[12]  Neal Koblitz,et al.  Constructing Elliptic Curve Cryptosystems in Characteristic 2 , 1990, CRYPTO.

[13]  Andreas Enge,et al.  Elliptic Curves and Their Applications to Cryptography , 1999, Springer US.

[14]  Sihem Mesnager,et al.  A new class of bent and hyper-bent Boolean functions in polynomial forms , 2011, Des. Codes Cryptogr..

[15]  G. Lachaud,et al.  The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.

[16]  René Schoof,et al.  Nonsingular plane cubic curves over finite fields , 1987, J. Comb. Theory A.

[17]  Petr Lisonek,et al.  On the Connection between Kloosterman Sums and Elliptic Curves , 2008, SETA.

[18]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[19]  K. Gandhi Primes of the form x2 + ny2 , 2012 .

[20]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[21]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[22]  Kwangjo Kim,et al.  Semi-bent Functions , 1994, ASIACRYPT.

[23]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[24]  F. Vercauteren Advances in Elliptic Curve Cryptography: Advances in Point Counting , 2005 .

[25]  Richard P. Brent,et al.  Faster Multiplication in GF(2)[x] , 2008, ANTS.

[26]  Frederik Vercauteren,et al.  Point Counting on Elliptic and Hyperelliptic Curves , 2005, Handbook of Elliptic and Hyperelliptic Curve Cryptography.

[27]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[28]  Guang Gong,et al.  Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.

[29]  Sihem Mesnager,et al.  Semibent Functions From Dillon and Niho Exponents, Kloosterman Sums, and Dickson Polynomials , 2011, IEEE Transactions on Information Theory.

[30]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.