Development of new tools to study membrane-anchored mammalian Atg8 proteins

ABSTRACT Mammals conserve multiple mammalian Atg8-family proteins (mATG8s) consisting of GABARAP (GABA type A receptor-associated protein) and MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) subfamilies that tightly bind to autophagic membranes in a membrane-anchored form. These proteins are crucial for selective autophagy and recruit proteins bearing LC3-interacting region (LIR) motifs. However, because limited research tools are available, information on the specific roles of each membrane-anchored mATG8 in selective autophagy is scarce. In this study, we identified LIR motifs specific to the membrane-anchored form of each mATG8 and characterized the residues critical for their selective interaction using cell-based assays and structural analyses. We then used these selective LIR motifs to develop probes and irreversible deconjugases that targeted selective membrane-anchored mATG8s in the autophagic membrane, revealing that membrane-anchored GABARAP subfamily proteins regulate the aggrephagy of amyotrophic lateral sclerosis-linked protein aggregates. Our tools will be useful for elucidating the functional significance of each mATG8 protein on autophagic membranes in autophagy research. Abbreviations A:C autophagic membrane:cytosol; ALS amyotrophic lateral sclerosis; ATG4 autophagy related 4; Atg8 autophagy related 8; BafA1 bafilomycin A1; BNIP3L/Nix BCL2 interacting protein 3 like; CALCOCO2/NDP52 calcium binding and coiled-coil domain 2; EBSS Earle’s balanced salt solution; GABARAP GABA type A receptor-associated protein; GST glutathione S transferase; HKO hexa knockout; Kd dissociation constant; LIR LC3-interacting region; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; NLS nuclear localization signal/sequence; PE phosphatidylethanolamine; SpHfl1 Schizosaccharomyces pombeorganic solute transmembrane transporter; SQSTM1/p62 SQSTM1/p62; TARDBP/TDP-43 TAR DNA binding protein; TKO triple knockout

[1]  D. Ascher,et al.  Human LC3 and GABARAP subfamily members achieve functional specificity via specific structural modulations , 2020, Autophagy.

[2]  T. Lamark,et al.  Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. , 2020, Journal of molecular biology.

[3]  Sangkyun Lee,et al.  Monitoring LC3- or GABARAP-positive autophagic membranes using modified RavZ-based probes , 2019, Scientific Reports.

[4]  A. Simonsen,et al.  Mechanisms and Pathophysiological Roles of the ATG8 Conjugation Machinery , 2019, Cells.

[5]  T. Johansen,et al.  Molecular determinants regulating selective binding of autophagy adapters and receptors to ATG8 proteins , 2019, Nature Communications.

[6]  You-Kyung Lee,et al.  Development of GABARAP family protein-sensitive LIR-based probes for neuronal autophagy , 2019, Molecular Brain.

[7]  P. Vourc'h,et al.  The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight? , 2019, Brain : a journal of neurology.

[8]  G. Evjen,et al.  Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs , 2019, Autophagy.

[9]  Mads Skytte Rasmussen,et al.  Use of Peptide Arrays for Identification and Characterization of LIR Motifs. , 2019, Methods in molecular biology.

[10]  G. Kroemer,et al.  Biological Functions of Autophagy Genes: A Disease Perspective , 2019, Cell.

[11]  Valerie C. Coffman,et al.  Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein , 2018, eLife.

[12]  I. Dikic,et al.  Mechanism and medical implications of mammalian autophagy , 2018, Nature reviews. Molecular cell biology.

[13]  Edward L. Huttlin,et al.  Systematic Analysis of Human Cells Lacking ATG8 Proteins Uncovers Roles for GABARAPs and the CCZ1/MON1 Regulator C18orf8/RMC1 in Macroautophagic and Selective Autophagic Flux , 2017, Molecular and Cellular Biology.

[14]  H. Song,et al.  A novel conformation of the LC3-interacting region motif revealed by the structure of a complex between LC3B and RavZ. , 2017, Biochemical and biophysical research communications.

[15]  V. Dötsch,et al.  Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins , 2017, Scientific Reports.

[16]  B. Kaang,et al.  Development of LC3/GABARAP sensors containing a LIR and a hydrophobic domain to monitor autophagy , 2017, The EMBO journal.

[17]  T. Lamark,et al.  ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8 , 2017, Autophagy.

[18]  V. Dötsch,et al.  Fluorescence‐based ATG8 sensors monitor localization and function of LC3/GABARAP proteins , 2017, The EMBO journal.

[19]  In Young Lee,et al.  The 1:2 complex between RavZ and LC3 reveals a mechanism for deconjugation of LC3 on the phagophore membrane , 2017, Autophagy.

[20]  G. Ramm,et al.  Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation , 2016, The Journal of cell biology.

[21]  V. Dötsch,et al.  Structural and functional analysis of the GABARAP interaction motif (GIM) , 2016, bioRxiv.

[22]  M. Bycroft,et al.  The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy , 2015, PLoS pathogens.

[23]  T. Melia,et al.  The Legionella Anti-autophagy Effector RavZ Targets the Autophagosome via PI3P- and Curvature-Sensing Motifs. , 2015, Developmental cell.

[24]  A. Cuervo,et al.  Autophagy and human disease: emerging themes. , 2014, Current opinion in genetics & development.

[25]  V. Promponas,et al.  iLIR , 2014, Autophagy.

[26]  V. Dötsch,et al.  Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. , 2014, Molecular cell.

[27]  David G. McEwan,et al.  The LC3 interactome at a glance , 2014, Journal of Cell Science.

[28]  Z. Elazar,et al.  The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. , 2013, Essays in biochemistry.

[29]  T. Lamark,et al.  The LIR motif – crucial for selective autophagy , 2013, Journal of Cell Science.

[30]  R. Isberg,et al.  The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation , 2012, Science.

[31]  S. Bloor,et al.  LC3C, Bound Selectively by a Noncanonical LIR Motif in NDP52, Is Required for Antibacterial Autophagy , 2012, Molecular cell.

[32]  N. Alto,et al.  Correlative light and electron microscopy (CLEM) as a tool to visualize microinjected molecules and their eukaryotic sub-cellular targets. , 2012, Journal of visualized experiments : JoVE.

[33]  Z. Elazar,et al.  Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes , 2011, Autophagy.

[34]  F. Inagaki,et al.  Atg8‐family interacting motif crucial for selective autophagy , 2010, FEBS letters.

[35]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[36]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[37]  T. Mizushima,et al.  Structural Basis for Sorting Mechanism of p62 in Selective Autophagy* , 2008, Journal of Biological Chemistry.

[38]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[39]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[40]  M. Zahoor,et al.  Crosstalk of Autophagy and the Secretory Pathway and Its Role in Diseases. , 2018, International review of cell and molecular biology.

[41]  V. Dötsch,et al.  Methods for Studying Interactions Between Atg8/LC3/GABARAP and LIR-Containing Proteins. , 2017, Methods in enzymology.

[42]  Marisa Ponpuak,et al.  Secretory autophagy. , 2015, Current opinion in cell biology.

[43]  members in , 2022 .