Mean Payoff Games and Linear Complementarity

We suggest new pseudopolynomial and subexponential algorithms for Mean Payoff Games (MPGs). The algorithms are based on representing the MPG decision problem in the forms of non-standard and standard Linear Complementarity Problems (LCPs): find w, z ≥ 0 satisfying w = Mz + q and w · z = 0, (1.1) and monotonic iterative propagation of slack updates.

[1]  G. Dantzig,et al.  A generalization of the linear complementarity problem , 1970 .

[2]  A. Ehrenfeucht,et al.  Positional strategies for mean payoff games , 1979 .

[3]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[4]  N. Megiddo A Note on the Complexity of P � Matrix LCP and Computing an Equilibrium , 1988 .

[5]  A. Karzanov,et al.  Cyclic games and an algorithm to find minimax cycle means in directed graphs , 1990 .

[6]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[7]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[8]  A. Prasad Sistla,et al.  On Model-Checking for Fragments of µ-Calculus , 1993, CAV.

[9]  Uri Zwick,et al.  The Complexity of Mean Payoff Games on Graphs , 1996, Theor. Comput. Sci..

[10]  E. Allen Emerson,et al.  Model Checking and the Mu-calculus , 1996, Descriptive Complexity and Finite Models.

[11]  Moshe Y. Vardi Linear vs. branching time: a complexity-theoretic perspective , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[12]  Nicolai N. Pisaruk,et al.  Mean Cost Cyclical Games , 1999, Math. Oper. Res..

[13]  Walter D. Morris Randomized pivot algorithms for P-matrix linear complementarity problems , 2002, Math. Program..

[14]  Henrik Björklund,et al.  A Discrete Subexponential Algorithm for Parity Games , 2003, STACS.

[15]  Henrik Björklund,et al.  A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games , 2007, Discret. Appl. Math..

[16]  Henrik Björklund,et al.  Controlled Linear Programming for Infinite Games , 2004 .

[17]  Henrik Björklund,et al.  The Controlled Linear Programming Problem , 2004 .

[18]  O. Svensson,et al.  Controlled Linear Programming: Boundedness and Duality , 2004 .

[19]  O. Svensson,et al.  Linear Complementarity Algorithms for Mean Payoff Games , 2005 .