Some Asymptotic Theory for Functional Regression and Classification

Exploiting an expansion for analytic functions of operators, the asymptotic distribution of an estimator of the functional regression parameter is obtained in a rather simple way; the result is applied to testing linear hypotheses. The expansion is also used to obtain a quick proof for the asymptotic optimality of a functional classification rule, given Gaussian populations.

[1]  Jane-Ling Wang,et al.  Functional canonical analysis for square integrable stochastic processes , 2003 .

[2]  André Mas,et al.  Functional linear regression with derivatives , 2006 .

[3]  Strumwasser Privileged Communication , 2009 .

[4]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[5]  J. L. Hodges,et al.  Testing the Approximate Validity of Statistical Hypotheses , 1954 .

[6]  D. Sengupta Linear models , 2003 .

[7]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[8]  André Mas,et al.  Testing hypotheses in the functional linear model , 2003 .

[9]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[10]  André Mas Estimation d'opérateurs de corrélation de processus fonctionnels : lois limites, tests, déviations modérées , 2000 .

[11]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[12]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[13]  A. V. Skorohod,et al.  Integration in Hilbert Space , 1974 .

[14]  T. Hsing,et al.  Canonical correlation for stochastic processes , 2008 .

[15]  P. Sarda,et al.  CLT in functional linear regression models , 2005, math/0508073.

[16]  Holger Dette,et al.  Validation of linear regression models , 1998 .

[17]  B. Silverman,et al.  Canonical correlation analysis when the data are curves. , 1993 .

[18]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[19]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[20]  P. Sarda,et al.  Functional linear model , 1999 .

[21]  R. Eubank,et al.  The delta method for analytic functions of random operators with application to functional data , 2007, 0711.4368.

[22]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[23]  David S. Gilliam,et al.  The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications , 2009, Int. J. Math. Math. Sci..

[24]  P. H. Müller,et al.  T. Kato, Perturbation theory for linear operators. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 132) XX + 592 S. m. 3 Fig. Berlin/Heidelberg/New York Springer-Verlag. Preis geb. DM 79,20 , 1967 .

[25]  Denis Bosq,et al.  Linear Processes in Function Spaces , 2000 .

[26]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[27]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[28]  G. S. Watson Statistics on Spheres , 1983 .

[29]  Jacob Feldman,et al.  Equivalence and perpendicularity of Gaussian processes , 1958 .

[30]  S. R. Searle Linear Models , 1971 .

[31]  Tosio Kato Perturbation theory for linear operators , 1966 .