A rendezvous of logic, complexity, and algebra

I am always looking for contributions. If you have any suggestion concerning the content of the Logic Column, or if you would like to contribute by writing a column yourself, feel free to get in touch with me.

[1]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[2]  Denis Thérien,et al.  Dichotomies in the Complexity of Solving Systems of Equations over Finite Semigroups , 2005, Theory of Computing Systems.

[3]  Lane A. Hemaspaandra SIGACT news complexity theory column 43 , 2004, SIGA.

[4]  Hans Kleine Büning,et al.  Resolution for Quantified Boolean Formulas , 1995, Inf. Comput..

[5]  Albert Atserias,et al.  On digraph coloring problems and treewidth duality , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[6]  Justin Pearson,et al.  Closure Functions and Width 1 Problems , 1999, CP.

[7]  Víctor Dalmau,et al.  Generalized majority-minority operations are tractable , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[8]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[9]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[10]  Víctor Dalmau Lloret Some dichotomy theorems on constant-free quantified Boolean formulas , 1997 .

[11]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[12]  Peter Jeavons,et al.  Quantified Constraints: Algorithms and Complexity , 2003, CSL.

[13]  Benoît Larose,et al.  Taylor Terms, Constraint Satisfaction and the Complexity of Polynomial Equations over Finite Algebras , 2006, Int. J. Algebra Comput..

[14]  P. Jeavons,et al.  The complexity of constraint satisfaction : an algebraic approach. , 2005 .

[15]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[16]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[17]  P. Jeavons Structural Theory of Automata‚ Semigroups‚ and Universal Algebra , 2003 .

[18]  Andrei A. Bulatov H-Coloring dichotomy revisited , 2005, Theor. Comput. Sci..

[19]  Heribert Vollmer,et al.  Quantified Constraints: The Complexity of Decision and Counting for Bounded Alternation , 2005, Electron. Colloquium Comput. Complex..

[20]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[21]  Dc Martin Functions of multiple-valued logic and the complexity of constraint satisfaction: A short survey , 2003 .

[22]  Edith Hemaspaandra,et al.  Dichotomy Theorems for Alternation-Bounded Quantified Boolean Formulas , 2004, ArXiv.

[23]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[24]  Emil W. Kiss,et al.  On Tractability and Congruence Distributivity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[25]  Hubie Chen,et al.  The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case , 2006, SIAM J. Comput..

[26]  Manuel Bodirsky,et al.  The Core of a Countably Categorical Structure , 2005, STACS.

[27]  Manuel Bodirsky,et al.  Quantified Equality Constraints , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[28]  Hubie Chen,et al.  From Pebble Games to Tractability: An Ambidextrous Consistency Algorithm for Quantified Constraint Satisfaction , 2005, CSL.

[29]  Manuel Bodirsky,et al.  Datalog and Constraint Satisfaction with Infinite Templates , 2006, STACS.

[30]  Manuel Bodirsky,et al.  Collapsibility in Infinite-Domain Quantified Constraint Satisfaction , 2006, CSL.

[31]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[32]  Manuel Bodirsky,et al.  The Complexity of Equality Constraint Languages , 2006, CSR.

[33]  Heribert Vollmer,et al.  Playing with Boolean Blocks , Part II : Constraint Satisfaction Problems 1 , 2004 .

[34]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[35]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[36]  Andrei A. Bulatov A graph of a relational structure and constraint satisfaction problems , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[37]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[38]  B. Larose,et al.  Bounded width problems and algebras , 2007 .

[39]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[40]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[41]  Sanjeev Khanna,et al.  3. Boolean Constraint Satisfaction Problems , 2001 .

[42]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[43]  Tomás Feder,et al.  Monotone monadic SNP and constraint satisfaction , 1993, STOC.

[44]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[45]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[46]  Manuel Bodirsky,et al.  Constraint satisfaction with infinite domains , 2004 .

[47]  Claude Tardif,et al.  A Characterisation of First-Order Constraint Satisfaction Problems , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[48]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[49]  L. A. Kaluzhnin,et al.  Galois theory for Post algebras. II , 1969 .

[50]  Erich Grädel,et al.  Capturing Complexity Classes by Fragments of Second-Order Logic , 1991, Theor. Comput. Sci..

[51]  Lane A. Hemaspaandra SIGACT news complexity theory column 42 , 2003, SIGA.

[52]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[53]  Peter Jeavons,et al.  The Complexity of Constraint Languages , 2006, Handbook of Constraint Programming.

[54]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[55]  Dexter Kozen Communication: Positive First-Order Logic is NP-Complete , 1981, IBM J. Res. Dev..

[56]  Peter Jeavons,et al.  An Algebraic Approach to Multi-sorted Constraints , 2003, CP.

[57]  I. Rosenberg MINIMAL CLONES I: THE FIVE TYPES , 1986 .

[58]  Víctor Dalmau,et al.  Linear datalog and bounded path duality of relational structures , 2005, Log. Methods Comput. Sci..

[59]  Hans Kleine Büning,et al.  On the Computational Complexity of Quantified Horn Clauses , 1987, CSL.

[60]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .