Robots Móviles con Orugas Historia, Modelado, Localización y Control

One of the most significant research field in mobile robotics deals with robots operating in off-road conditions (planetary rovers, agriculture robots, search and rescue operations, military robots, etc.). However, obtaining a successful result is not an easy task. One primary point is the locomotion system. In this case, tracks constitute a well-known approach and since the beginning of the 20th century this locomotion system has demonstrated remarkable results in manned vehicles. This article motivates and shows through physical experiments the goodness of tracked mobile robots in off-road conditions. Firstly, a historical perspective of tracked vehicles and tracked robots is addressed. Then, the main modelling aspects are introduced, in particular, the slip phenomenon. After that, several localization techniques are discussed with especial mention to visual odometry. The motion control aspect is also of primal importance. In this regard, several slip-compensation control strategies are analysed. Finally, the authors background obtained in this field is expounded.

[1]  Danwei Wang,et al.  Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective , 2008, IEEE Transactions on Robotics.

[2]  A. Quibel,et al.  Prediction of trafficability for tracked vehicle on broken soil: real size tests , 2003 .

[3]  Roberto Brunelli,et al.  Template Matching Techniques in Computer Vision: Theory and Practice , 2009 .

[4]  J. Y. Wong,et al.  An introduction to terramechanics , 1984 .

[5]  Navid Nourani-Vatani,et al.  Practical visual odometry for car-like vehicles , 2009, 2009 IEEE International Conference on Robotics and Automation.

[6]  Roland Siegwart,et al.  Combined visual odometry and visual compass for off-road mobile robots localization , 2012, Robotica.

[7]  Steven Dubowsky,et al.  Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers , 2004, IEEE Transactions on Robotics.

[8]  Stergios I. Roumeliotis,et al.  Autonomous Stair Climbing for Tracked Vehicles , 2007, Int. J. Robotics Res..

[9]  Guangjun Liu,et al.  Mobile manipulation using tracks of a tracked mobile robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Laura E. Ray Estimation of Terrain Forces and Parameters for Rigid-Wheeled Vehicles , 2009, IEEE Transactions on Robotics.

[11]  Wei Huang,et al.  “Wheels vs. tracks” – A fundamental evaluation from the traction perspective , 2006 .

[12]  Shraga Shoval Stability of a multi tracked robot traveling over steep slopes , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[13]  Kazuya Yoshida,et al.  Slope traversal controls for planetary exploration rover on sandy terrain , 2009 .

[14]  Salvador Pedraza,et al.  Power Consumption Modeling of Skid-Steer Tracked Mobile Robots on Rigid Terrain , 2009, IEEE Transactions on Robotics.

[15]  Steven Dubowsky,et al.  Mobile Robots in Rough Terrain - Estimation, Motion Planning, and Control with Application to Planetary Rovers , 2004, Springer Tracts in Advanced Robotics.

[16]  Andrew J. Davison,et al.  A visual compass based on SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[17]  Christophe Cariou,et al.  Automatic guidance of a four-wheel-steering mobile robot for accurate field operations , 2009 .

[18]  Kazuya Yoshida,et al.  Path following control for tracked vehicles based on slip-compensating odometry , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Philippe Martinet,et al.  Adaptive and Predictive Path Tracking Control for Off-road Mobile Robots , 2007, Eur. J. Control.

[20]  Kazuya Yoshida,et al.  Slope traversal controls for planetary exploration rover on sandy terrain , 2009, J. Field Robotics.

[21]  Stergios I. Roumeliotis,et al.  Slip-compensated path following for planetary exploration rovers , 2006, Adv. Robotics.

[22]  Larry H. Matthies,et al.  Robust and Efficient Stereo Feature Tracking for Visual Odometry , 2008, 2008 IEEE International Conference on Robotics and Automation.

[23]  Jo Yung Wong,et al.  Theory of ground vehicles , 1978 .

[24]  Dezhen Song,et al.  Adaptive Trajectory Tracking Control of Skid-Steered Mobile Robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  M. G. Bekker,et al.  Theory of land locomotion , 1956 .

[26]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[27]  Luis Gracia,et al.  Kinematic modeling of wheeled mobile robots with slip , 2007, Adv. Robotics.

[28]  Pietro Perona,et al.  Learning and prediction of slip from visual information , 2007, J. Field Robotics.

[29]  Danwei Wang,et al.  GPS-Based Path Following Control for a Car-Like Wheeled Mobile Robot With Skidding and Slipping , 2008, IEEE Transactions on Control Systems Technology.

[30]  Igor Skrjanc,et al.  Tracking-error model-based predictive control for mobile robots in real time , 2007, Robotics Auton. Syst..

[31]  Karl Iagnemma,et al.  Classification-based wheel slip detection and detector fusion for mobile robots on outdoor terrain , 2009, Auton. Robots.

[32]  Jian Wan,et al.  A numerical approach to design control invariant sets for constrained nonlinear discrete-time systems with guaranteed optimality , 2009, J. Glob. Optim..

[33]  Paul Hornback The Wheel Versus Track Dilemma , 1998 .

[34]  D. Rubinstein,et al.  A detailed single-link track model for multi-body dynamic simulation of crawlers , 2007 .

[35]  B. Hofmann-Wellenhof,et al.  Global Positioning System , 1992 .

[36]  M. G. Bekker,et al.  Theory of Land Locomotion: The Mechanics of Vehicle Mobility , 1962 .

[37]  Larry H. Matthies,et al.  Terrain Adaptive Navigation for planetary rovers , 2009, J. Field Robotics.

[38]  Andrew E. Johnson,et al.  Computer Vision on Mars , 2007, International Journal of Computer Vision.

[39]  Frédéric Labrosse,et al.  The visual compass: Performance and limitations of an appearance‐based method , 2006, J. Field Robotics.

[40]  Salvador Pedraza,et al.  Approximating Kinematics for Tracked Mobile Robots , 2005, Int. J. Robotics Res..

[41]  José Luis Guzmán,et al.  Autonomous Tracked Robots in Planar Off-Road Conditions , 2014 .

[42]  Guido Korlath Mobility analysis of off-road vehicles: Benefits for development, procurement and operation , 2007 .

[43]  J. Sánchez-Hermosilla,et al.  A Mechatronic Description of an Autonomous Mobile Robot for Agricultural Tasks in Greenhouses , 2010 .

[44]  D. A. Crolla,et al.  Vehicle dynamics—steering II , 1992 .

[45]  Christophe Cariou,et al.  Automatic guidance of a four‐wheel‐steering mobile robot for accurate field operations , 2009, J. Field Robotics.

[46]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[47]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[48]  Francisco Rodríguez,et al.  Adaptive control for a mobile robot under slip conditions using an LMI-based approach , 2009, 2009 European Control Conference (ECC).

[49]  Jianzhong Shang,et al.  A reconfigurable tracked mobile robot based on four-linkage mechanism , 2013 .

[50]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[51]  Guenter H. Hohl Military terrain vehicles , 2007 .

[52]  张志雄,et al.  A reconfigurable tracked mobile robot based on four-linkage mechanism , 2013 .

[53]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[54]  Johann Borenstein,et al.  The CLAPPER: A Dual-Drive Mobile Robot with Internal Correction of Dead-Reckoning Errors , 1994, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[55]  Dezhen Song,et al.  Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation , 2009, IEEE Transactions on Robotics.

[56]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..