Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis

We consider the stiffness matrices arising from the Galerkin B-spline isogeometric analysis discretization of classical elliptic problems. By exploiting their specific spectral properties, compactly described by a symbol, we design an efficient multigrid method for the fast solution of the related linear systems. The convergence rate of general-purpose multigrid methods, based on classical stationary smoothers, is optimal (i.e., bounded independently of the matrix size), but it also worsens exponentially with respect to the spline degree. The symbol allows us to give a detailed theoretical explanation of this exponential worsening in the case of the two-grid scheme. In addition, thanks to a specific factorization of the symbol, we are able to design an ad hoc multigrid method with an effective preconditioned CG or GMRES smoother at the finest level, in the spirit of the multi-iterative idea. The convergence rate of this multi-iterative multigrid method is not only optimal but also robust (i.e., bounded su...

[1]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[2]  L. Hörmander,et al.  Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .

[3]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[4]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[5]  S. Capizzano Matrix algebra preconditioners for multilevel Toeplitz matrices are not superlinear , 2002 .

[6]  Stefano Serra-Capizzano,et al.  ON THE ASYMPTOTIC SPECTRUM OF FINITE ELEMENT , 2007 .

[7]  Leonid Golinskii,et al.  The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.

[8]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[9]  Marco Donatelli,et al.  An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices , 2010, Numer. Linear Algebra Appl..

[10]  Luca F. Pavarino,et al.  Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .

[11]  Marco Donatelli,et al.  Multigrid methods for cubic spline solution of two point (and 2D) boundary value problems , 2016 .

[12]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[13]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[14]  Marco Donatelli,et al.  Multigrid methods for Toeplitz linear systems with different size reduction , 2010, 1010.5730.

[15]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[16]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[17]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[18]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[19]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .

[20]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[21]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[22]  Xiao-Qing Jin,et al.  Developments and Applications of Block Toeplitz Iterative Solvers , 2003 .

[23]  S. Serra,et al.  Multi-iterative methods , 1993 .

[24]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[25]  Stefano Serra Capizzano,et al.  Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate , 2004, Theor. Comput. Sci..

[26]  Hendrik Speleers,et al.  Spectral analysis of matrices in isogeometric collocation methods , 2014 .

[27]  Marco Donatelli,et al.  Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices , 2015 .

[28]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[29]  J. Kraus,et al.  Algebraic multilevel preconditioning in isogeometric analysis: Construction and numerical studies , 2013, 1304.0403.

[30]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[31]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[32]  Marco Donatelli,et al.  A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.

[33]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[34]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..

[35]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[36]  Paolo Tilli,et al.  Locally Toeplitz sequences: spectral properties and applications , 1998 .

[37]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[38]  D. Bartuschat Algebraic Multigrid , 2007 .

[39]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[40]  Giancarlo Sangalli,et al.  BPX-preconditioning for isogeometric analysis , 2013 .