Insights into the TiO 2-Based Photocatalytic Systems and Their Mechanisms

Photocatalysis is a multifunctional phenomenon that can be employed for energy applications such as H2 production, CO2 reduction into fuels, and environmental applications such as pollutant degradations, antibacterial disinfection, etc. In this direction, it is not an exaggerated fact that TiO2 is blooming in the field of photocatalysis, which is largely explored for various photocatalytic applications. The deeper understanding of TiO2 photocatalysis has led to the design of new photocatalytic materials with multiple functionalities. Accordingly, this paper exclusively reviews the recent developments in the modification of TiO2 photocatalyst towards the understanding of its photocatalytic mechanisms. These modifications generally involve the physical and chemical changes in TiO2 such as anisotropic structuring and integration with other metal oxides, plasmonic materials, carbon-based materials, etc. Such modifications essentially lead to the changes in the energy structure of TiO2 that largely boosts up the photocatalytic process via enhancing the band structure alignments, visible light absorption, carrier separation, and transportation in the system. For instance, the ability to align the band structure in TiO2 makes it suitable for multiple photocatalytic processes such as degradation of various pollutants, H2 production, CO2 conversion, etc. For these reasons, TiO2 can be realized as a prototypical photocatalyst, which paves ways to develop new photocatalytic materials in the field. In this context, this review paper sheds light into the emerging trends in TiO2 in terms of its modifications towards multifunctional photocatalytic applications.

[1]  S. Balakumar,et al.  Correction: Compliments of confinements: substitution and dimension induced magnetic origin and band-bending mediated photocatalytic enhancements in Bi1-xDyxFeO3 particulate and fiber nanostructures. , 2019, Nanoscale.

[2]  Sheng Han,et al.  Facile preparation of Ti3+ self-doped TiO2 nanoparticles and their dramatic visible photocatalytic activity for the fast treatment of highly concentrated Cr(vi) effluent , 2019, Catalysis Science & Technology.

[3]  G. Zeng,et al.  Artificial Z-scheme photocatalytic system: What have been done and where to go? , 2019, Coordination Chemistry Reviews.

[4]  Jitao Chen,et al.  WS2 nanodots-modified TiO2 nanotubes to enhance visible-light photocatalytic activity , 2019, Materials Letters.

[5]  Yuhong Zhang,et al.  Preparation of hollow yttrium-doped TiO2 microspheres with enhanced visible-light photocatalytic activity , 2019, Materials Research Express.

[6]  Tingting Guo,et al.  Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation , 2019, Separation and Purification Technology.

[7]  S. Luo,et al.  Direct Z-scheme MoSe2 decorating TiO2 nanotube arrays photocatalyst for water decontamination , 2019, Electrochimica Acta.

[8]  Hai‐Long Jiang,et al.  Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis. , 2018, Accounts of chemical research.

[9]  L. Palmisano,et al.  Influence of Surface-Related Phenomena on Mechanism, Selectivity, and Conversion of TiO2 -Induced Photocatalytic Reactions. , 2019, ChemSusChem.

[10]  M. Sakar,et al.  Recent advances and strategies to tailor the energy levels, active sites and electron mobility in titania and its doped/composite analogues for hydrogen evolution in sunlight , 2019, Catalysis Science & Technology.

[11]  Jitao Chen,et al.  Construction of 2D-2D TiO2 nanosheet/layered WS2 heterojunctions with enhanced visible-light-responsive photocatalytic activity , 2019, Chinese Journal of Catalysis.

[12]  M. Kumar,et al.  Insights into Reinforced Photocatalytic Activity of the CNT–TiO2 Nanocomposite for CO2 Reduction and Water Splitting , 2018, The Journal of Physical Chemistry C.

[13]  M. Jaroniec,et al.  Direct Z-scheme photocatalysts: Principles, synthesis, and applications , 2018, Materials Today.

[14]  Yaqing Feng,et al.  Compositing Two-Dimensional Materials with TiO2 for Photocatalysis , 2018, Catalysts.

[15]  N. Nuraje,et al.  A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials , 2018 .

[16]  Zhaohui Li,et al.  Catalysis and photocatalysis by metal organic frameworks. , 2018, Chemical Society reviews.

[17]  E. Mijowska,et al.  Graphitic Carbon Nitride and Titanium Dioxide Modified with 1 D and 2 D Carbon Structures for Photocatalysis. , 2018, ChemSusChem.

[18]  Yang Xia,et al.  Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis , 2018, Chemical Engineering Journal.

[19]  H. Akyıldız,et al.  Photocatalytic activity and dielectric properties of hydrothermally derived tetragonal BaTiO3 nanoparticles using TiO2 nanofibers , 2018, Journal of Alloys and Compounds.

[20]  Yu-Sheng Hsiao,et al.  Microwave-assisted synthesis of TiO2/WS2 heterojunctions with enhanced photocatalytic activity , 2018, Journal of the Taiwan Institute of Chemical Engineers.

[21]  Feng Liu,et al.  Band gap reduction in van der Waals layered 2D materials via a de-charge transfer mechanism. , 2018, Nanoscale.

[22]  L. You,et al.  Ferroelectrics in Photocatalysis , 2018, Ferroelectric Materials for Energy Applications.

[23]  Huanting Wang,et al.  Modified metal-organic frameworks as photocatalysts , 2018, Applied Catalysis B: Environmental.

[24]  P. Kidkhunthod,et al.  Effect of Cu addition on TiO2 surface properties and photocatalytic performance: X-ray Absorption Spectroscopy analysis , 2018, Journal of Physics and Chemistry of Solids.

[25]  S. Harish,et al.  Erbium doped TiO2 interconnected mesoporous spheres as an efficient visible light catalyst for photocatalytic applications , 2018, Applied Surface Science.

[26]  M. Sakar,et al.  Observation of oxo-bridged yttrium in TiO2 nanostructures and their enhanced photocatalytic hydrogen generation under UV/Visible light irradiations , 2018, Materials Research Bulletin.

[27]  Jiaguo Yu,et al.  Direct Z-Scheme TiO2/NiS Core–Shell Hybrid Nanofibers with Enhanced Photocatalytic H2-Production Activity , 2018, ACS Sustainable Chemistry & Engineering.

[28]  Nikhil K. Kothurkar,et al.  TiO2-carbon quantum dots (CQD) nanohybrid: enhanced photocatalytic activity , 2018, Materials Research Express.

[29]  S. Pillai,et al.  Black TiO2 Nanomaterials: A Review of Recent Advances , 2018, Chemical Engineering Journal.

[30]  Guiying Li,et al.  Enhanced visible-light photocatalytic activity to volatile organic compounds degradation and deactivation resistance mechanism of titania confined inside a metal-organic framework. , 2018, Journal of colloid and interface science.

[31]  P. Kidkhunthod,et al.  Effects of Ce addition on the properties and photocatalytic activity of TiO 2 , investigated by X-ray absorption spectroscopy , 2018, Materials Chemistry and Physics.

[32]  S. Lenaerts,et al.  Hierarchical MoS2 @TiO2 Heterojunctions for Enhanced Photocatalytic Performance and Electrocatalytic Hydrogen Evolution. , 2018, Chemistry, an Asian journal.

[33]  Rui Li,et al.  Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation , 2018, Scientific Reports.

[34]  M. Zanoni,et al.  MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media , 2018, Applied Catalysis B: Environmental.

[35]  Hui‐Ming Cheng,et al.  Selective Chemical Epitaxial Growth of TiO2 Islands on Ferroelectric PbTiO3 Crystals to Boost Photocatalytic Activity , 2018, Joule.

[36]  Zhenyi Zhang,et al.  UV‐Vis‐NIR‐Driven Plasmonic Photocatalysts with Dual‐Resonance Modes for Synergistically Enhancing H2 Generation , 2018 .

[37]  T. Do,et al.  A novel route to synthesize C/Pt/TiO2 phase tunable anatase–Rutile TiO2 for efficient sunlight-driven photocatalytic applications , 2018, Applied Catalysis B: Environmental.

[38]  Wubiao Duan,et al.  Preparation of a Novel Ternary Composite of TiO2/UiO-66-NH2/Graphene Oxide with Enhanced Photocatalytic Activities , 2018, Catalysis Letters.

[39]  H. R. Chandan,et al.  Observation of simultaneous photocatalytic degradation and hydrogen evolution on the lanthanum modified TiO2 nanostructures , 2018 .

[40]  Renhui Zhang,et al.  Photocatalytic activity of Ti3+ self-doped dark TiO2 ultrafine nanorods, grey SiO2 nanotwin crystalline, and their composite under visible light , 2018 .

[41]  B. Han,et al.  MIL-125-NH2@TiO2 Core-Shell Particles Produced by a Post-Solvothermal Route for High-Performance Photocatalytic H2 Production. , 2018, ACS applied materials & interfaces.

[42]  A. Garshev,et al.  The microstructure effect on the Au/TiO2 and Ag/TiO2 nanocomposites photocatalytic activity , 2018 .

[43]  Xuedan Song,et al.  Defect-engineered TiO2 Hollow Spiny Nanocubes for Phenol Degradation under Visible Light Irradiation , 2018, Scientific Reports.

[44]  Kwang Youn Cho,et al.  Novel synthesis of WSe2-Graphene-TiO2 ternary nanocomposite via ultrasonic technics for high photocatalytic reduction of CO2 into CH3OH. , 2018, Ultrasonics sonochemistry.

[45]  Jinlong Yang,et al.  MIL-125 and NH2-MIL-125 Modified TiO2 Nanotube Array as Efficient Photocatalysts for Pollute Degradation , 2018, Chemistry Letters.

[46]  T. Do,et al.  Materials and Mechanisms of Photo-Assisted Chemical Reactions under Light and Dark Conditions: Can Day-Night Photocatalysis Be Achieved? , 2018, ChemSusChem.

[47]  Jin-Ming Wu,et al.  Photocatalytic activity of TiO 2 nanorods, nanowires and nanoflowers filled with TiO 2 nanoparticles , 2018 .

[48]  Hao Yu,et al.  Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity. , 2018, Chemical communications.

[49]  F. Tao,et al.  Consciously Constructing Heterojunction or Direct Z-Scheme Photocatalysts by Regulating Electron Flow Direction , 2018 .

[50]  Z. Ji,et al.  A study of constructing heterojunction between two-dimensional transition metal sulfides (MoS 2 and WS 2 ) and (101), (001) faces of TiO 2 , 2018 .

[51]  B. Wang,et al.  MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis , 2018, Nanotechnology.

[52]  Le Zhou,et al.  MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution , 2018 .

[53]  Minghui Yang,et al.  Morphology-controlled synthesis of TiO2/MoS2 nanocomposites with enhanced visible-light photocatalytic activity , 2018 .

[54]  Mostafa R. Abukhadra,et al.  TiO2 Nanoribbons/Carbon Nanotubes Composite with Enhanced Photocatalytic Activity; Fabrication, Characterization, and Application , 2018, Scientific Reports.

[55]  K. Kalantar-zadeh,et al.  Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts , 2017, Nano-micro letters.

[56]  Jiaguo Yu,et al.  A review on TiO 2 -based Z-scheme photocatalysts , 2017 .

[57]  N. R. Khalid,et al.  Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review , 2017 .

[58]  B. Cheng,et al.  Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity , 2017 .

[59]  S. Bagheri,et al.  Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach , 2017 .

[60]  C. Petit,et al.  CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation , 2017 .

[61]  R. Hosseinzadeh,et al.  Pd nanoparticle loaded TiO2 semiconductor for photocatalytic degradation of Paraoxon pesticide under visible-light irradiation , 2017, Journal of Materials Science: Materials in Electronics.

[62]  Yaqiong Wang,et al.  Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO3/α-Fe2O3 and the Significance of Interface Morphology Control. , 2017, ACS applied materials & interfaces.

[63]  Shaohua Shen,et al.  Black TiO2 for solar hydrogen conversion , 2017 .

[64]  Song Liu,et al.  The synthesis and characterization of ytterbium-doped TiO2 hollow spheres with enhanced visible-light photocatalytic activity , 2017 .

[65]  T. Do,et al.  Role of CxNy‐Triazine in Photocatalysis for Efficient Hydrogen Generation and Organic Pollutant Degradation Under Solar Light Irradiation , 2017 .

[66]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials for photocatalysis , 2017 .

[67]  Xuemei Zhou,et al.  Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes , 2017, 2004.05011.

[68]  Xiao Wei,et al.  Ultrathin Anatase TiO2 Nanosheets for High-Performance Photocatalytic Hydrogen Production. , 2017, Small.

[69]  H. P. Shivaraju,et al.  Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy , 2017, Applied Water Science.

[70]  Li Wang,et al.  Highly efficient Z-scheme WO 3–x quantum dots/TiO 2 for photocatalytic hydrogen generation , 2017 .

[71]  W. Zhou,et al.  Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance , 2017 .

[72]  L. Ilharco,et al.  Photochemical and photocatalytic evaluation of 1D titanate/TiO 2 based nanomaterials , 2017 .

[73]  R. Habchi,et al.  Enhanced Visible-Light Photocatalytic Performance of Electrospun rGO/TiO2 Composite Nanofibers , 2017 .

[74]  T. Do,et al.  Hollow Sr/Rh-codoped TiO2 photocatalyst for efficient sunlight-driven organic compound degradation , 2017 .

[75]  Qian Yang,et al.  In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties , 2016 .

[76]  Ping Xu,et al.  Enhanced photocatalytic activity on polarized ferroelectric KNbO3 , 2016 .

[77]  Jiaguo Yu,et al.  Phenylamine-Functionalized rGO/TiO2 Photocatalysts: Spatially Separated Adsorption Sites and Tunable Photocatalytic Selectivity. , 2016, ACS applied materials & interfaces.

[78]  Dinkar V. Aware,et al.  Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol–gel method , 2016, Applied Nanoscience.

[79]  E. Hensen,et al.  Photocatalytic decarboxylation of lactic acid by Pt/TiO2. , 2016, Chemical communications.

[80]  Yi Du,et al.  A ferroelectric photocatalyst Ag10Si4O13 with visible-light photooxidation properties , 2016, Journal of Materials Chemistry A.

[81]  L. Pan,et al.  Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr(VI) on MoSe2 , 2016 .

[82]  J. Dupont,et al.  Photocatalytic activity of Li-doped TiO2 nanoparticles: Synthesis via ionic liquid-assisted hydrothermal route , 2016 .

[83]  F. Huang,et al.  Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production , 2016 .

[84]  Wei Zhou,et al.  Fabrication of 3 D Mesoporous Black TiO2 /MoS2 /TiO2 Nanosheets for Visible-Light-Driven Photocatalysis. , 2016, ChemSusChem.

[85]  Wenguang Tu,et al.  Z‐Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges , 2016, Advanced science.

[86]  Z. Li,et al.  Self-assembly of CPO-27-Mg/TiO2 nanocomposite with enhanced performance for photocatalytic CO2 reduction , 2016 .

[87]  R. Ribeiro,et al.  Band-Gap Engineering for Photocatalytic Applications: Anionic and Cationic Doping of TiO 2 Anatase , 2016 .

[88]  Lianzhou Wang,et al.  Recent advances in 2D materials for photocatalysis. , 2016, Nanoscale.

[89]  T. Do,et al.  Efficient hollow double-shell photocatalysts for the degradation of organic pollutants under visible light and in darkness , 2016 .

[90]  Y. Li,et al.  Metal-organic frameworks for photocatalysis , 2018, SCIENTIA SINICA Chimica.

[91]  S. Maddila,et al.  Photocatalyzed ozonation by Ce doped TiO2 catalyst degradation of pesticide Dicamba in water , 2016 .

[92]  S. Balakumar,et al.  Particulates vs. fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures. , 2016, Nanoscale.

[93]  T. Natarajan,et al.  Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation , 2015 .

[94]  P. Praserthdam,et al.  Impact of calcination atmospheres on the physiochemical and photocatalytic properties of nanocrystalline TiO2 and Si-doped TiO2 , 2015 .

[95]  A. Emeline,et al.  Influence of the Dopant Concentration on the Photocatalytic Activity: Al-Doped TiO2 , 2015 .

[96]  Jianping Ma,et al.  Fabrication of Cd(II)-MOF-based ternary photocatalytic composite materials for H2 production via a gel-to-crystal approach. , 2015, Chemical communications.

[97]  Feng Ren,et al.  3D Flowerlike α-Fe2O3@TiO2 Core–Shell Nanostructures: General Synthesis and Enhanced Photocatalytic Performance , 2015 .

[98]  Xin Li,et al.  Fabrication of TiO2/porous carbon nanofibers with superior visible photocatalytic activity , 2015 .

[99]  C. Wan,et al.  Fabrication of TiO2/MoS2 Composite Photocatalyst and Its Photocatalytic Mechanism for Degradation of Methyl Orange under Visible Light , 2015 .

[100]  T. Do,et al.  Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications , 2015 .

[101]  Guowei Yang,et al.  Matching energy levels between TiO2 and α-Fe2O3 in a core–shell nanoparticle for visible-light photocatalysis , 2015 .

[102]  Junhong Chen,et al.  Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2 , 2015, Scientific Reports.

[103]  Jiaguo Yu,et al.  Dual Z-scheme charge transfer in TiO2–Ag–Cu2O composite for enhanced photocatalytic hydrogen generation , 2015 .

[104]  Xiaobo Chen,et al.  Black Titanium Dioxide (TiO2) Nanomaterials , 2015 .

[105]  Junwang Tang,et al.  Control of chemical state of cerium in doped anatase TiO2 by solvothermal synthesis and its application in photocatalytic water reduction , 2015 .

[106]  Shudan Li,et al.  Photocatalytic Activity of TiO2 Nanofibers with Doped La Prepared by Electrospinning Method , 2015 .

[107]  S. Hussain,et al.  Hydrothermal synthesis, characterization and optical absorption property of nanoscale WS2/TiO2 composites , 2015 .

[108]  Wenjuan Liao,et al.  Synthesis of Z-scheme g-C3N4-Ti(3+)/TiO2 material: an efficient visible light photoelectrocatalyst for degradation of phenol. , 2015, Physical chemistry chemical physics : PCCP.

[109]  R. Hennig,et al.  Computational Screening of 2D Materials for Photocatalysis. , 2015, The journal of physical chemistry letters.

[110]  Zhengxiao Guo,et al.  Visible-light driven heterojunction photocatalysts for water splitting – a critical review , 2015 .

[111]  B. Li,et al.  Solar photocatalytic activities of porous Nb-doped TiO2 microspheres by coupling with tungsten oxide , 2015 .

[112]  S. Ibrahim,et al.  Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity , 2015, Beilstein journal of nanotechnology.

[113]  Wenxian Li Influence of electronic structures of doped TiO2 on their photocatalysis , 2015 .

[114]  Wenbin Lin,et al.  Metal—Organic Frameworks for Artificial Photosynthesis and Photocatalysis , 2014 .

[115]  M. T. Colomer,et al.  TiO2/Eu3+ Thin Films with High Photoluminescence Emission Prepared by Electrophoretic Deposition from Nanoparticulate Sols , 2014 .

[116]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[117]  Jiaguo Yu,et al.  New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. , 2014, Physical chemistry chemical physics : PCCP.

[118]  Zhiyu Wang,et al.  Enhanced photocatalytic activity of hydroxylated and N-doped anatase derived from amorphous hydrate , 2014 .

[119]  Wei-szu Liu,et al.  The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts , 2014 .

[120]  Qiuye Li,et al.  Preparation of Bi-doped TiO2 nanoparticles and their visible light photocatalytic performance , 2014 .

[121]  Daming Zhang,et al.  F, Ca co-doped TiO2 nanocrystals with enhanced photocatalytic activity. , 2014, Dalton transactions.

[122]  S. Lanceros‐Méndez,et al.  Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties , 2014, Journal of Materials Science.

[123]  T. Ishihara,et al.  Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting. , 2014, The journal of physical chemistry letters.

[124]  Jianshe Liu,et al.  Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. , 2014, Chemical Society reviews.

[125]  T. Do,et al.  Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis. , 2014, Angewandte Chemie.

[126]  F. Kapteijn,et al.  Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges , 2014 .

[127]  K. Hong,et al.  A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension. , 2014, Physical chemistry chemical physics : PCCP.

[128]  O. Proux,et al.  Photocatalysis with chromium-doped TiO2: bulk and surface doping. , 2014, ChemSusChem.

[129]  T. Do,et al.  Design of multicomponent photocatalysts for hydrogen production under visible light using water-soluble titanate nanodisks. , 2014, Nanoscale.

[130]  P. Gupta,et al.  Nanostructured Bi(1−x)Gd(x)FeO3 – a multiferroic photocatalyst on its sunlight driven photocatalytic activity , 2014 .

[131]  Yingchun Yu,et al.  Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites , 2014 .

[132]  E. L. Boulbar,et al.  Optical properties of rare earth-doped TiO2 anatase and rutile thin films grown by pulsed-laser deposition , 2014 .

[133]  T. Do,et al.  Synthesis of Titanium Dioxide/Cadmium Sulfide Nanosphere Particles for Photocatalyst Applications , 2014 .

[134]  A. Xu,et al.  Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts , 2014 .

[135]  Tierui Zhang,et al.  Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution , 2014 .

[136]  Yiling Zhang,et al.  Ferroelectric‐Enhanced Photocatalysis with TiO2/BiFeO3 , 2014 .

[137]  G. Rohrer,et al.  Photocatalysts with internal electric fields. , 2014, Nanoscale.

[138]  Jiali Zhai,et al.  Study of Homologous Elements: Fe, Co, and Ni Dopant Effects on the Photoreactivity of TiO2 Nanosheets , 2014 .

[139]  Dong Zhang,et al.  Synthesis of Sc and V-doped TiO2 nanoparticles and photodegradation of rhodamine-B , 2013 .

[140]  Yiping Zhao,et al.  Ag nanoparticle embedded TiO(2) composite nanorod arrays fabricated by oblique angle deposition: toward plasmonic photocatalysis. , 2013, ACS applied materials & interfaces.

[141]  A. Mohamed,et al.  Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide , 2013, Nanoscale Research Letters.

[142]  Xinwei Zhao,et al.  Roles of electrons and holes in the luminescence of rare-earth-doped semiconductors , 2013 .

[143]  S. Dunn,et al.  Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3—Influence on the Carrier Separation and Stern Layer Formation , 2013 .

[144]  Longwei Yin,et al.  Core-shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region. , 2013, Physical chemistry chemical physics : PCCP.

[145]  T. Do,et al.  Design of water-soluble CdS–titanate–nickel nanocomposites for photocatalytic hydrogen production under sunlight , 2013 .

[146]  Jun Du,et al.  Hydrophilic and photocatalytic performances of lanthanum doped titanium dioxide thin films , 2013 .

[147]  Rui Li,et al.  Photoelectrochemical and photocatalytic properties of Ag-loaded BaTiO3/TiO2 heterostructure nanotube arrays , 2013 .

[148]  C. Pinel,et al.  Study of Monometallic Pd/TiO2 Catalysts for the Hydrogenation of Succinic Acid in Aqueous Phase , 2013 .

[149]  Jiaguo Yu,et al.  Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. , 2013, Physical chemistry chemical physics : PCCP.

[150]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[151]  P. Schmuki,et al.  Photocatalytic properties of in situ doped TiO2-nanotubes grown by rapid breakdown anodization , 2013 .

[152]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[153]  Rui Li,et al.  BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity , 2013 .

[154]  Ying Dai,et al.  Green synthetic approach for Ti3+ self-doped TiO(2-x) nanoparticles with efficient visible light photocatalytic activity. , 2013, Nanoscale.

[155]  Ying Dai,et al.  Metallic zinc- assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. , 2013, Chemical communications.

[156]  Hui‐Ming Cheng,et al.  A red anatase TiO2 photocatalyst for solar energy conversion , 2012 .

[157]  A. Mohamed,et al.  Synthesis and applications of graphene-based TiO(2) photocatalysts. , 2012, ChemSusChem.

[158]  A. Fujishima,et al.  TiO2 photocatalysis: Design and applications , 2012 .

[159]  Zhaoyang Fan,et al.  Comparing graphene-TiO₂ nanowire and graphene-TiO₂ nanoparticle composite photocatalysts. , 2012, ACS applied materials & interfaces.

[160]  T. Do,et al.  Controlled synthesis of titanate nanodisks as versatile building blocks for the design of hybrid nanostructures. , 2012, Angewandte Chemie.

[161]  Peng Wang,et al.  Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. , 2012, Physical chemistry chemical physics : PCCP.

[162]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[163]  P. Fornasiero,et al.  Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. , 2012, Journal of the American Chemical Society.

[164]  A. Choudhury,et al.  Extending Photocatalytic Activity of TiO2 Nanoparticles to Visible Region of Illumination by Doping of Cerium , 2012, Photochemistry and photobiology.

[165]  T. Do,et al.  A solvothermal single‐step route towards shape‐controlled titanium dioxide nanocrystals , 2012 .

[166]  S. G. Kumar,et al.  Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. , 2011, The journal of physical chemistry. A.

[167]  J. Pan,et al.  Hierarchical assembly of anatase nanowhiskers and evaluation of their photocatalytic efficiency in comparison to various one-dimensional TiO2 nanostructures , 2011 .

[168]  G. Shao,et al.  Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity , 2011 .

[169]  T. Do,et al.  A new route to size and population control of silver clusters on colloidal TiO₂ nanocrystals. , 2011, ACS applied materials & interfaces.

[170]  Liyi Shi,et al.  Solvothermal preparation of Sn4+ doped anatase TiO2 nanocrystals from peroxo-metal-complex and their photocatalytic activity , 2011 .

[171]  Ya‐Ping Sun,et al.  Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. , 2011, Journal of the American Chemical Society.

[172]  R. Leary,et al.  Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis , 2011 .

[173]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[174]  C. Karunakaran,et al.  Cu-doped TiO(2) nanoparticles for photocatalytic disinfection of bacteria under visible light. , 2010, Journal of colloid and interface science.

[175]  Soonhyun Kim,et al.  Photocatalytic Comparison of TiO2 Nanoparticles and Electrospun TiO2 Nanofibers: Effects of Mesoporosity and Interparticle Charge Transfer , 2010 .

[176]  Bin Xu,et al.  Functional hybrid materials based on carbon nanotubes and metal oxides , 2010 .

[177]  T. Lim,et al.  Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A , 2010 .

[178]  Jinlong Zhang,et al.  Carbon-Deposited TiO2: Synthesis, Characterization, and Visible Photocatalytic Performance , 2010 .

[179]  Baozhu Tian,et al.  Study of photocatalytic activity of Cd-doped mesoporous nanocrystalline TiO2 prepared at low temperature , 2009 .

[180]  T. Do,et al.  Shape-controlled synthesis of highly crystalline titania nanocrystals. , 2009, ACS nano.

[181]  Angelo Albini,et al.  Photocatalysis. A multi-faceted concept for green chemistry. , 2009, Chemical Society reviews.

[182]  Vyacheslav N. Kuznetsov,et al.  On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments , 2009 .

[183]  N. Murafa,et al.  Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles , 2009 .

[184]  Yuanhua Lin,et al.  BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism , 2009 .

[185]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[186]  Sang Kyoo Lim,et al.  Preparation of TiO2-embedded carbon nanofibers and their photocatalytic activity in the oxidation of gaseous acetaldehyde , 2008 .

[187]  G. Oskam,et al.  Phase-pure TiO2 nanoparticles: anatase, brookite and rutile , 2008, Nanotechnology.

[188]  Xiaobo Chen,et al.  The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. , 2008, Journal of the American Chemical Society.

[189]  Steve Dunn,et al.  Photo-reduction of silver salts on highly heterogeneous lead zirconate titanate , 2007 .

[190]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[191]  Shudan Li,et al.  Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles , 2006 .

[192]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[193]  J. Weber,et al.  Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions , 2005 .

[194]  Jerzy Walendziewski,et al.  Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents , 2005 .

[195]  J. P. Lewis,et al.  Second-generation photocatalytic materials: anion-doped TiO2 , 2005 .

[196]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[197]  Jiaguo Yu,et al.  Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[198]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[199]  Allen J. Bard,et al.  Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder , 2002 .

[200]  M. Anpo,et al.  Photoinduced superhydrophilic properties of Ti-B binary oxide thin films and their photocatalytic reactivity for the decomposition of NO. , 2001, Journal of nanoscience and nanotechnology.

[201]  Jinlong Zhang,et al.  Photocatalytic decomposition of NO on Ti-HMS mesoporous zeolite catalysts , 2000 .

[202]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[203]  M. Anpo,et al.  Photocatalysis on native and platinum-loaded TiO2 and ZnO catalysts. Origin of different reactivities on wet and dry metal oxides. , 1991 .

[204]  Detlef W. Bahnemann,et al.  Cobalt(II) tetrasulfophthalocyanine on titanium dioxide. 2. Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur dioxide , 1987 .

[205]  M. Anpo,et al.  Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates , 1987 .

[206]  K. Domen,et al.  Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides , 1986 .

[207]  Tijana Rajh,et al.  Size quantization in small semiconductor particles , 1985 .

[208]  A. Henglein,et al.  Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide , 1984 .

[209]  J. Moser,et al.  Light-induced electron transfer in colloidal semiconductor dispersions: single vs. dielectronic reduction of acceptors by conduction-band electrons , 1983 .

[210]  T. Kawai,et al.  Conversion of carbohydrate into hydrogen fuel by a photocatalytic process , 1980, Nature.

[211]  J. White,et al.  Photoassisted Water-Gas Shift Reaction over Platinized TiO2 Catalysts. , 1980 .

[212]  M. Graetzel,et al.  Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water , 1979 .

[213]  M. Halmann,et al.  Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells , 1978, Nature.

[214]  G. Schrauzer,et al.  Photolysis of water and photoreduction of nitrogen on titanium dioxide , 1977 .

[215]  A. Boonstra,et al.  Relation between the photoadsorption of oxygen and the number of hydroxyl groups on a titanium dioxide surface , 1975 .

[216]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[217]  Yihe Zhang,et al.  Ferroelectric spontaneous polarization steering charge carriers migration for promoting photocatalysis and molecular oxygen activation. , 2018, Journal of colloid and interface science.

[218]  J. Zhong,et al.  Investigating the photocurrent generation and optoelectronic responsivity of WS2-TiO2 heterostructure , 2018 .

[219]  S. B. A. Hamid,et al.  Effect of band gap engineering in anionic-doped TiO 2 photocatalyst , 2017 .

[220]  Diana Baader Solid Surfaces Interfaces And Thin Films , 2016 .

[221]  X. Qi,et al.  Mixed-dimensional TiO2 nanoparticles with MoSe2 nanosheets for photochemical hydrogen generation , 2016, Journal of Materials Science: Materials in Electronics.

[222]  Zhibo Ma,et al.  Fundamental Processes in Surface Photocatalysis on TiO 2 , 2016 .

[223]  F. J. Al-Maliki,et al.  Synthesis of Tb-doped titanium dioxide nanostructures by sol–gel method for environmental photocatalysis applications , 2016, Journal of Sol-Gel Science and Technology.

[224]  W. Shi,et al.  Titanium dioxide macroporous materials doped with iron: synthesis and photo-catalytic properties , 2014 .

[225]  Junling Wang,et al.  Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity , 2014 .

[226]  D. Tsai,et al.  Plasmonic photocatalysis , 2013, Reports on progress in physics. Physical Society.

[227]  João A. Labrincha,et al.  Sol–gel synthesis, characterisation and photocatalytic activity of pure, W-, Ag- and W/Ag co-doped TiO2 nanopowders , 2013 .

[228]  M. Xing,et al.  Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis , 2013 .

[229]  M. Kılıç,et al.  The Role of Non-Metal Doping in TiO2 Photocatalysis , 2010 .

[230]  H. Lasa,et al.  Establishing Photocatalytic Kinetic Rate Equations: Basic Principles and Parameters , 2005 .

[231]  M. Anpo,et al.  Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species , 1988 .

[232]  K. Domen,et al.  Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst , 1980 .

[233]  S. Kodama,et al.  U.v. irradiation-induced fission of a CC or CC bond adsorbed on TiO2 , 1980 .

[234]  A. Bard Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors , 1979 .