On Control-Lyapunov Functions for Hybrid Time-Varying Systems

We explicitly construct strict input-to-state stable Lyapunov functions for time varying hybrid systems, in terms of given nonstrict Lyapunov functions and persistency of excitation parameters. This provides a hybrid analog of our earlier continuous time Lyapunov function constructions. Our results are new even for the special case of discrete time systems since our formulas involve finite sums of persistency of excitation parameters. We also construct explicit strict Lyapunov functions for systems satisfying appropriate nonstrict hybrid analogs of the conditions from Matrosov's theorem

[1]  M. A. Kaashoek,et al.  Robust control of linear systems and nonlinear control , 1990 .

[2]  Hassan K. Khalil,et al.  Nonlinear Systems Third Edition , 2008 .

[3]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[4]  Pieter Collins,et al.  A Trajectory-Space Approach to Hybrid Systems , 2004 .

[5]  Michael S. Branicky,et al.  Introduction to Hybrid Systems , 2005, Handbook of Networked and Embedded Control Systems.

[6]  Chaohong Cai,et al.  Converse Lyapunov theorems and robust asymptotic stability for hybrid systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[7]  Michael Malisoff,et al.  Further constructions of control-Lyapunov functions and stabilizing feedbacks for systems satisfying the Jurdjevic-Quinn conditions , 2006, IEEE Transactions on Automatic Control.

[8]  Eduardo Sontag,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999, at - Automatisierungstechnik.

[9]  Michael Malisoff,et al.  On strict Lyapunov functions for rapidly time-varying nonlinear systems , 2006, 2006 American Control Conference.

[10]  Dragan Nesic,et al.  On uniform asymptotic stability of time-varying parameterized discrete-time cascades , 2004, IEEE Transactions on Automatic Control.

[11]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[12]  Michael Malisoff,et al.  Constructions of strict Lyapunov functions for discrete time and hybrid time-varying systems , 2006, math/0610210.

[13]  Frédéric Mazenc,et al.  Strict Lyapunov functions for time-varying systems , 2003, Autom..

[14]  Michael Malisoff,et al.  Further remarks on strict input-to-state stable Lyapunov functions for time-varying systems , 2005, Autom..

[15]  Dragan Nesic,et al.  Lyapunov functions for time-varying systems satisfying generalized conditions of Matrosov theorem , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[16]  Dirk Aeyels,et al.  Exponential Stability of Nonlinear Time-Varying Differential Equations and Partial Averaging , 2002, Math. Control. Signals Syst..

[17]  Eduardo D. Sontag,et al.  FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS , 1990 .

[18]  Eduardo Sontag,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .