Adaptive finite element method for elliptic optimal control problems: convergence and optimality

In this paper we consider the convergence analysis of adaptive finite element method for elliptic optimal control problems with pointwise control constraints. We use variational discretization concept to discretize the control variable and piecewise linear and continuous finite elements to approximate the state variable. Based on the well-established convergence theory of AFEM for elliptic boundary value problems, we rigorously prove the convergence and quasi-optimality of AFEM for optimal control problems with respect to the state and adjoint state variables, by using the so-called perturbation argument. Numerical experiments confirm our theoretical analysis.

[1]  Arnd Rösch,et al.  Optimal control in non-convex domains: a priori discretization error estimates , 2007 .

[2]  Wenbin Liu,et al.  A Posteriori Error Estimates for Convex Boundary Control Problems , 2001, SIAM J. Numer. Anal..

[3]  Kunibert G. Siebert,et al.  Convergence of Adaptive Finite Elements for Optimal Control Problems with Control Constraints , 2014 .

[4]  Michael Hintermüller,et al.  AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .

[5]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[6]  Yanping Chen,et al.  A posteriori error estimates for hp finite element solutions of convex optimal control problems , 2011, J. Comput. Appl. Math..

[7]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[8]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[9]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[10]  Wenbin Liu,et al.  Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41 , 2008 .

[11]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[12]  Shipeng Mao,et al.  Quasi-optimality of an Adaptive Finite Element Method for an Optimal Control Problem , 2011, Comput. Methods Appl. Math..

[13]  Kunibert G. Siebert,et al.  A Posteriori Error Analysis of Optimal Control Problems with Control Constraints , 2014, SIAM J. Control. Optim..

[14]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[15]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[16]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[17]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[18]  Wenbin Liu,et al.  Local A Posteriori Error Estimates for Convex Boundary Control Problems , 2009, SIAM J. Numer. Anal..

[19]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[20]  Alan Demlow,et al.  Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors , 2011, Numerische Mathematik.

[21]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[22]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[23]  Ningning Yan,et al.  Adaptive Finite Element Methods: Optimal Control Governed by PDEs , 2012 .

[24]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[25]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[26]  Ronald H. W. Hoppe,et al.  Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints , 2007 .

[27]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[28]  Kunibert G. Siebert,et al.  Convergence of Adaptive Finite Elements for Control Constrained Optimal Control Problems , 2013 .

[29]  Ningning Yan,et al.  A posteriori error estimates for optimal control problems governed by parabolic equations , 2003, Numerische Mathematik.

[30]  Xiaoying Dai,et al.  Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues , 2012, 1210.1846.

[31]  Lianhua He,et al.  CONVERGENCE AND COMPLEXITY OF ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2011 .

[32]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[33]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[34]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[35]  Michael Hintermüller,et al.  Goal-oriented adaptivity in control constrained optimal control of partial differential equations , 2008, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[36]  Wenbin Liu,et al.  A Posteriori Error Estimates for Control Problems Governed by Stokes Equations , 2002, SIAM J. Numer. Anal..

[37]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[38]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[39]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .