mBm-Based Scalings of Traffic Propagated in Internet

Scaling phenomena of the Internet traffic gain people's interests, ranging from computer scientists to statisticians. There are two types of scales. One is small-time scaling and the other large-time one. Tools to separately describe them are desired in computer communications, such as performance analysis of network systems. Conventional tools, such as the standard fractional Brownian motion (fBm), or its increment process, or the standard multifractional fBm (mBm) indexed by the local Holder function 𝐻(𝑡) may not be enough for this purpose. In this paper, we propose to describe the local scaling of traffic by using 𝐷(𝑡) on a point-by-point basis and to measure the large-time scaling of traffic by using E[𝐻(𝑡)] on an interval-by-interval basis, where E implies the expectation operator. Since E[𝐻(𝑡)] is a constant within an observation interval while 𝐷(𝑡) is random in general, they are uncorrelated with each other. Thus, our proposed method can be used to separately characterize the small-time scaling phenomenon and the large one of traffic, providing a new tool to investigate the scaling phenomena of traffic.

[1]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[2]  M. V. Valkenburg Network Analysis , 1964 .

[3]  Zoran Bojkovic,et al.  Electrical Engineering Hall of Fame: Originator of Teletraffic Theory [Scanning Our Past] , 2010, Proc. IEEE.

[4]  József Bíró,et al.  Network internal traffic characterization and end-to-end delay bound calculus for generalized processor sharing scheduling discipline , 2005, Comput. Networks.

[5]  Weijia Jia,et al.  A whole correlation structure of asymptotically self-similar traffic in communication networks , 2000, Proceedings of the First International Conference on Web Information Systems Engineering.

[6]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[7]  Moshe Sidi,et al.  Stochastically bounded burstiness for communication networks , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[8]  W. F. Trench,et al.  Introduction to Real Analysis: An Educational Approach , 2009 .

[9]  Pierre Borgnat,et al.  Foreword to the special issue on traffic modeling, its computations and applications , 2010, Telecommun. Syst..

[10]  Ming Li,et al.  On the Predictability of Long-Range Dependent Series , 2010 .

[11]  Weijia Jia,et al.  Constructing low-connectivity and full-coverage three dimensional sensor networks , 2010, IEEE Journal on Selected Areas in Communications.

[12]  Walter Willinger,et al.  Scaling phenomena in the Internet: Critically examining criticality , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Ming Li,et al.  Sufficient Condition for Min-Plus Deconvolution to Be Closed in the Service-Curve Set in Computer Networks , 2007 .

[14]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[15]  Yuming Jiang,et al.  Per-domain packet scale rate guarantee for expedited forwarding , 2006, TNET.

[16]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[17]  Ming Li Essay on teletraffic models (I) , 2010 .

[18]  Josée Mignault,et al.  Resource Allocation for Worst Case Traffic in ATM Networks , 1997, Perform. Evaluation.

[19]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[20]  Ming Li,et al.  Modeling network traffic using generalized Cauchy process , 2008 .

[21]  H. Michiel,et al.  Teletraffic engineering in a broad-band era , 1997, Proc. IEEE.

[22]  Ming Li,et al.  Change trend of averaged Hurst parameter of traffic under DDOS flood attacks , 2006, Comput. Secur..

[23]  Arne Jensen,et al.  The life and works of A. K. Erlang , 1960 .

[24]  John T. Kent,et al.  Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .

[25]  Ming Li,et al.  Self-similarity and long-range dependence in teletraffic , 2009 .

[26]  Anja Feldmann,et al.  The changing nature of network traffic: scaling phenomena , 1998, CCRV.

[27]  Konstantina Papagiannaki,et al.  Network performance monitoring at small time scales , 2003, IMC '03.

[28]  Jie Li,et al.  An integrated routing and admission control mechanism for real-time multicast connections in ATM networks , 2001, IEEE Trans. Commun..

[29]  I Csabai,et al.  1/f noise in computer network traffic , 1994 .

[30]  Raj Jain,et al.  Packet Trains-Measurements and a New Model for Computer Network Traffic , 1986, IEEE J. Sel. Areas Commun..

[31]  Wei Zhao,et al.  Admission control for hard real-time connections in ATM LANs , 2001 .

[32]  Riccardo Bettati,et al.  Toward statistical QoS guarantees in a differentiated services network , 2010, Telecommun. Syst..

[33]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[34]  A. Adas,et al.  Traffic models in broadband networks , 1997, IEEE Commun. Mag..

[35]  Ghiocel Toma Specific Differential Equations for Generating Pulse Sequences , 2010 .

[36]  Carlo Cattani,et al.  Harmonic wavelet approximation of random, fractal and high frequency signals , 2010, Telecommun. Syst..

[37]  Peter Hall,et al.  On the Relationship Between Fractal Dimension and Fractal Index for Stationary Stochastic Processes , 1994 .

[38]  R. Kanwal Generalized Functions: Theory and Applications , 2004 .

[39]  S. Mitra,et al.  Handbook for Digital Signal Processing , 1993 .

[40]  N.D. Georganas,et al.  Self-Similar Processes in Communications Networks , 1998, IEEE Trans. Inf. Theory.

[41]  Xiaohua Yang,et al.  A new adaptive local linear prediction method and its application in hydrological time series. , 2010 .

[42]  Ming Li Generation of teletraffic of generalized Cauchy type , 2010 .

[43]  Anas N. Al-Rabadi,et al.  Fractal Geometry-Based Hypergeometric Time Series Solution to the Hereditary Thermal Creep Model for the Contact of Rough Surfaces Using the Kelvin-Voigt Medium , 2010 .

[44]  Jacques Lévy Véhel,et al.  The covariance structure of multifractional Brownian motion, with application to long range dependence , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[45]  Yong Liu,et al.  Fundamental calculus on generalized stochastically bounded bursty traffic for communication networks , 2009, Comput. Networks.

[46]  Walter Willinger,et al.  Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level , 1997, TNET.

[47]  H. Rubin,et al.  A distributed software architecture for telecommunication networks , 1994, IEEE Network.

[48]  Wilton R. Abbott,et al.  Network Calculus , 1970 .

[49]  Y. Sinai Self-Similar Probability Distributions , 1976 .

[50]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1987 .

[51]  S. C. Lim,et al.  Investigating Multi-Fractality of Network Traffic Using Local Hurst Function , 2008 .

[52]  Ming Li,et al.  Power spectrum of generalized Cauchy process , 2010, Telecommun. Syst..

[53]  Ezzat G. Bakhoum,et al.  Mathematical Transform of Traveling-Wave Equations and Phase Aspects of Quantum Interaction , 2010 .

[54]  E. Bakhoum,et al.  Dynamical Aspects of Macroscopic and Quantum Transitions due to Coherence Function and Time Series Events , 2010 .

[55]  F.A. Tobagi,et al.  Modeling and measurement techniques in packet communication networks , 1978, Proceedings of the IEEE.

[56]  Ming Li,et al.  A rigorous derivation of power spectrum of fractional Gaussian noise , 2006 .

[57]  V. Paxson,et al.  WHERE MATHEMATICS MEETS THE INTERNET , 1998 .

[58]  Marc Boisseau,et al.  High-speed networks , 1994, Wiley series in communication and distributed systems.

[59]  Sally Floyd,et al.  Wide area traffic: the failure of Poisson modeling , 1995, TNET.

[60]  Yong Liu,et al.  Stochastic Network Calculus , 2008 .

[61]  Ming Li,et al.  A generalized Cauchy process and its application to relaxation phenomena , 2006 .

[62]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[63]  Philippe Nain,et al.  Impact of Bursty Traffic on Queues , 2002 .

[64]  J. Beran Statistical methods for data with long-range dependence , 1992 .

[65]  Shengyong Chen,et al.  FGN based telecommunication traffic models , 2010 .

[66]  Mayer Humi,et al.  Assessing Local Turbulence Strength from a Time Series , 2010 .

[67]  Jean Mairesse,et al.  Services within a Busy Period of an M/M/1 Queue and Dyck Paths , 2007, Queueing Syst. Theory Appl..

[68]  Ming Dong,et al.  A Tutorial on Nonlinear Time-Series Data Mining in Engineering Asset Health and Reliability Prediction: Concepts, Models, and Algorithms , 2010 .

[69]  Zonghua Liu Chaotic Time Series Analysis , 2010 .

[70]  Ming Li,et al.  Representation of a Stochastic Traffic Bound , 2010, IEEE Transactions on Parallel and Distributed Systems.

[71]  Rene L. Cruz,et al.  A calculus for network delay, Part I: Network elements in isolation , 1991, IEEE Trans. Inf. Theory.

[72]  G. P. Pollini,et al.  PCS mobility support over fixed ATM networks , 1997, IEEE Commun. Mag..

[73]  William Stallings,et al.  High-Speed Networks: TCP/IP and ATM Design Principles , 1998 .

[74]  L. Tu The Life and Works of , 2006 .

[75]  Ming Li,et al.  Viewing Sea Level by a One-Dimensional Random Function with Long Memory , 2011 .

[76]  Xiaohua Jia,et al.  Using Traffic Regulation to Meet End-to-End Deadlines in ATM Networks , 1999, IEEE Trans. Computers.

[77]  S. C. Lim,et al.  Inhomogeneous scaling behaviors in Malaysian foreign currency exchange rates , 2001 .

[78]  T. Downs,et al.  On the One-Moment Analysis of Telephone Traffic Networks , 1979, IEEE Trans. Commun..

[79]  Massimo Scalia,et al.  Analysis of Large-Amplitude Pulses in Short Time Intervals: Application to Neuron Interactions , 2010 .

[80]  George Varghese,et al.  New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice , 2003, TOCS.

[81]  J. Doob The Elementary Gaussian Processes , 1944 .

[82]  Robert Gardner,et al.  Introduction To Real Analysis , 1994 .

[83]  Vern Paxson,et al.  Measurements and analysis of end-to-end Internet dynamics , 1997 .

[84]  N. C. Nigam Introduction to Random Vibrations , 1983 .

[85]  Ming Li,et al.  A Novel Description of Multifractal Phenomenon of Network Traffic Based on Generalized Cauchy Process , 2007, International Conference on Computational Science.

[86]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[87]  Carlo Cattani,et al.  Fractals and Hidden Symmetries in DNA , 2010 .

[88]  Ness B. Shroff,et al.  Admission control for statistical QoS: theory and practice , 1999, IEEE Netw..

[89]  西尾 真喜子 Doob; Elementary Gaussian Processesについて (多重マルコフ性と予測理論への応用) , 1972 .

[90]  Jerry D. Gibson,et al.  The Communications Handbook , 2002 .

[91]  M. Reiser,et al.  Performance evaluation of data communication systems , 1982, Proceedings of the IEEE.

[92]  V. Paxson,et al.  Growth trends in wide-area TCP connections , 1994, IEEE Network.

[93]  Walter Willinger,et al.  Long-range dependence in variable-bit-rate video traffic , 1995, IEEE Trans. Commun..

[94]  Tilmann Gneiting,et al.  Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..

[95]  Rene L. Cruz,et al.  A calculus for network delay, Part II: Network analysis , 1991, IEEE Trans. Inf. Theory.

[96]  Suresh Singh,et al.  PAMAS—power aware multi-access protocol with signalling for ad hoc networks , 1998, CCRV.

[97]  Wei Zhao,et al.  Stochastic performance analysis of non-feedforward networks , 2010, Telecommun. Syst..

[98]  Ming Li Fractal Time Series—A Tutorial Review , 2010 .

[99]  Ming Li A Class of Negatively Fractal Dimensional Gaussian Random Functions , 2011 .

[100]  Ieee On Analysis of Circuit-Switched Networks Employing Originating-Office Control with Spill-Forward , 1978 .

[101]  Li Ming Reliable Anomaly Detecting System against Low-rate DDoS Attack , 2009 .

[102]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[103]  Fabio Ricciato,et al.  Revisiting an old friend: on the observability of the relation between long range dependence and heavy tail , 2010, Telecommun. Syst..

[104]  Peter Hall,et al.  Periodogram-Based Estimators of Fractal Properties , 1995 .

[105]  Jonathan M. Pitts,et al.  Introduction to IP and ATM Design and Performance , 2000 .

[106]  R. R. P. Jackson Introduction to Queueing Theory , 1943 .

[107]  David R. Cox,et al.  Time Series Analysis , 2012 .

[108]  Hao Jiang,et al.  Why is the internet traffic bursty in short time scales? , 2005, SIGMETRICS '05.

[109]  R. Adler The Geometry of Random Fields , 2009 .

[110]  F. Le Gall One moment model for telephone traffic , 1982 .

[111]  R. Peltier,et al.  Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .