Power-Efficient $W$ -Band (92–98 GHz) Phased-Array Transmit and Receive Elements With Quadrature-Hybrid-Based Passive Phase Interpolator

This paper presents a power-efficient phased-array transmit and receive (T/R) channels adopting phase shifters (PSs) utilizing quadrature-hybrid-based power-domain phase interpolator. The W-band T/R channels are implemented in GlobalFoundries 0.13-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> SiGe BiCMOS process (GF8XP) for large-scale phased-array applications. At 94 GHz, the proposed Rx channel achieves 137-dB<inline-formula> <tex-math notation="LaTeX">$\cdot $ </tex-math></inline-formula>Hz dynamic range (DR) with 18-mW dc power consumption (<inline-formula> <tex-math notation="LaTeX">$P_{\text {diss}}$ </tex-math></inline-formula>), one of the smallest <inline-formula> <tex-math notation="LaTeX">$P_{\text {diss}}$ </tex-math></inline-formula> at W-band. The measured Rx channel gain is 17–23 dB with 5.8–6.6-dB noise figure (NF) over 92–98 GHz. The rms gain error and rms phase error in the Rx channel are less than 2 dB and 6°, respectively, at 92–100 GHz. The input <inline-formula> <tex-math notation="LaTeX">$P_{-1\text {dB}}$ </tex-math></inline-formula> is −31 dBm at 94 GHz. The Tx channel produces 7.4-dBm saturated output power with 49.5-mW <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm{ diss}}$ </tex-math></inline-formula> at 94 GHz resulting in 11% of collector efficiency, one of the highest Tx channel efficiencies reported so far. The <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm{ diss}}$ </tex-math></inline-formula> at quiescent bias point of the Tx channel is 26 mW. The measured Tx channel gain is 7.5–12 dB and the rms gain error is <inline-formula> <tex-math notation="LaTeX">$<$ </tex-math></inline-formula>1.28 dB over 85–105 GHz. The measured rms phase error in the Tx channel is <inline-formula> <tex-math notation="LaTeX">$<$ </tex-math></inline-formula>1.5° at 94 GHz and remains lower than 8° when driving the Tx channel up to near the power saturation. The peak collector efficiency and PAE of the integrated class-AB power amplifier is 23.5% and 18.2%, respectively, at 94 GHz, one of the highest efficiency performances at W-band. The chip sizes of the Rx and Tx channels excluding I/O pads are <inline-formula> <tex-math notation="LaTeX">$1.2 \times 0.55$ </tex-math></inline-formula> mm<sup>2</sup> and <inline-formula> <tex-math notation="LaTeX">$1.4 \times 0.55$ </tex-math></inline-formula> mm<sup>2</sup>, respectively.

[1]  John D. Cressler,et al.  W-band SiGe power amplifiers , 2014, 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[2]  Gabriel M. Rebeiz,et al.  A Low-Power BiCMOS 4-Element Phased Array Receiver for 76–84 GHz Radars and Communication Systems , 2012, IEEE Journal of Solid-State Circuits.

[3]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[4]  Gabriel M. Rebeiz,et al.  A wideband high-efficiency 79–97 GHz SiGe linear power amplifier with ≫ 90 mW output , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[5]  Shmuel Ravid,et al.  A Bidirectional TX/RX Four-Element Phased Array at 60 GHz With RF-IF Conversion Block in 90-nm CMOS Process , 2010, IEEE Transactions on Microwave Theory and Techniques.

[6]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[7]  James Parker,et al.  A 60GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[8]  Duixian Liu,et al.  A Fully Integrated 16-Element Phased-Array Transmitter in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[9]  Zheng Wang,et al.  Design and Analysis of a W-band 9-Element Imaging Array Receiver Using Spatial-Overlapping Super-Pixels in Silicon , 2014, IEEE Journal of Solid-State Circuits.

[10]  Noriaki Kaneda,et al.  A 70–100 GHz Direct-Conversion Transmitter and Receiver Phased Array Chipset Demonstrating 10 Gb/s Wireless Link , 2013, IEEE Journal of Solid-State Circuits.

[11]  H. Bruce Wallace An application of advanced SiGe to millimeter-wave phased arrays , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[12]  K. Maruhashi,et al.  A 60-GHz band CMOS phased array transmitter utilizing compact baseband phase shifters , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[13]  Zhihua Wang,et al.  A 77 GHz Frequency Doubling Two-Path Phased-Array FMCW Transceiver for Automotive Radar , 2016, IEEE Journal of Solid-State Circuits.

[14]  Gabriel M. Rebeiz,et al.  60-GHz 64- and 256-Elements Wafer-Scale Phased-Array Transmitters Using Full-Reticle and Subreticle Stitching Techniques , 2016, IEEE Transactions on Microwave Theory and Techniques.

[15]  Danny Elad,et al.  A high gain wideband 77GHz SiGe power amplifier , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[16]  Kwang-Jin Koh,et al.  90° hybrid-coupler based phase-interpolation phase-shifter for phased-array applications at W-band and beyond , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[17]  Songcheol Hong,et al.  A 77-GHz CMOS Power Amplifier With a Parallel Power Combiner Based on Transmission-Line Transformer , 2013, IEEE Transactions on Microwave Theory and Techniques.

[18]  Peter M. Asbeck,et al.  Multi-Drive Stacked-FET Power Amplifiers at 90 GHz in 45 nm SOI CMOS , 2014, IEEE Journal of Solid-State Circuits.

[19]  Q. J. Gu,et al.  Two-Way Current-Combining $W$-Band Power Amplifier in 65-nm CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.

[20]  Gabriel M. Rebeiz,et al.  A 108–114 GHz 4 $\,\times\,$4 Wafer-Scale Phased Array Transmitter With High-Efficiency On-Chip Antennas , 2013, IEEE Journal of Solid-State Circuits.

[21]  Gabriel M. Rebeiz,et al.  A 76–84-GHz 16-Element Phased-Array Receiver With a Chip-Level Built-In Self-Test System , 2013, IEEE Transactions on Microwave Theory and Techniques.

[22]  A. Natarajan,et al.  $W$-Band Dual-Polarization Phased-Array Transceiver Front-End in SiGe BiCMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[23]  Arthur H. M. van Roermund,et al.  A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems , 2010, IEEE Journal of Solid-State Circuits.

[24]  Samuel J. Parisi 1800 LUMPED ELEMENT HYBRID , 1989 .

[25]  Ruey-Beei Wu,et al.  60-GHz Four-Element Phased-Array Transmit/Receive System-in-Package Using Phase Compensation Techniques in 65-nm Flip-Chip CMOS Process , 2012, IEEE Transactions on Microwave Theory and Techniques.

[26]  Ali M. Niknejad,et al.  A 65 nm CMOS 4-Element Sub-34 mW/Element 60 GHz Phased-Array Transceiver , 2011, IEEE Journal of Solid-State Circuits.

[27]  K. Maruhashi,et al.  A High Gain 77 GHz Power Amplifier Operating at 0.7 V Based on 90 nm CMOS Technology , 2009, IEEE Microwave and Wireless Components Letters.

[28]  Jau-Jr Lin,et al.  Power Amplifier for 77-GHz Automotive Radar in 90-nm LP CMOS Technology , 2010, IEEE Microwave and Wireless Components Letters.

[29]  Ali M. Niknejad,et al.  A 94-GHz 4TX–4RX Phased-Array FMCW Radar Transceiver With Antenna-in-Package , 2017, IEEE Journal of Solid-State Circuits.

[30]  Kenichi Okada,et al.  13.3 A 56Gb/s W-band CMOS wireless transceiver , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[31]  P. Chevalier,et al.  A Low-Voltage SiGe BiCMOS 77-GHz Automotive Radar Chipset , 2008, IEEE Transactions on Microwave Theory and Techniques.

[32]  Patrick Reynaert,et al.  An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[33]  Mikko Kärkkäinen,et al.  W-Band CMOS Amplifiers Achieving +10 dBm Saturated Output Power and 7.5 dB NF , 2009, IEEE J. Solid State Circuits.

[34]  Sandipan Kundu,et al.  A Compact, Supply-Voltage Scalable 45–66 GHz Baseband-Combining CMOS Phased-Array Receiver , 2015, IEEE Journal of Solid-State Circuits.

[35]  Lawrence Larson,et al.  A 11% PAE, 15.8-dBm two-stage 90-GHz stacked-FET power amplifier in 45-nm SOI CMOS , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[36]  Gabriel M. Rebeiz,et al.  A 90–100 Ghz 4×4 sige BiCMOS polarimetric transmit-receive phased array with simultaneous receive-beams capabilities , 2013, 2013 IEEE International Symposium on Phased Array Systems and Technology.

[37]  A. Hajimiri,et al.  A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon , 2006, IEEE Journal of Solid-State Circuits.