Matrix-free Particle Brush System with Bimodal Molecular Weight Distribution Prepared by SI-ATRP

The modification of the surface of nanoparticles with polymeric chains is ubiquitously used to engineer the physicochemical properties of nanoparticle fillers and to enable new material technologies based on polymer hybrid materials with controlled microstructure. The tethering of particles with polymeric chains of distinct (high and low) degree of polymerization (so-called “bimodal polymer grafts”) has emerged as a particularly interesting strategy to combine the synergistic benefits of dense and sparse polymer grafts (i.e., good control of particle interactions facilitated by densely grafted polymer chains with the high inorganic content characteristic for sparsely grafted systems). In this contribution, surface-initiated atom transfer radical polymerization (SI-ATRP) is demonstrated to be a versatile tool that enables the synthesis of bimodal graft modifications with precise control of the degree of polymerization of the respective graft species. For the particular case of polystyrene-tethered silica p...

[1]  A. Böker,et al.  Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles , 2015 .

[2]  K. Matyjaszewski,et al.  Synthesis of Binary Polymer Brushes via Two-Step Reverse Atom Transfer Radical Polymerization , 2011 .

[3]  K. Matyjaszewski,et al.  Atom transfer radical polymerization. , 2001, Chemical reviews.

[4]  K. Matyjaszewski,et al.  Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials , 2014 .

[5]  K. Matyjaszewski,et al.  Highly Efficient “Click” Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP , 2005 .

[6]  Krzysztof Matyjaszewski,et al.  Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes , 1995 .

[7]  K. Matyjaszewski,et al.  SARA ATRP or SET-LRP. End of controversy? , 2014 .

[8]  L. Schadler,et al.  Ligand engineering of polymer nanocomposites: from the simple to the complex. , 2014, ACS applied materials & interfaces.

[9]  T. Kwei,et al.  Compatibility in Blends of Poly(methyl methacrylate) and Poly(styrene-co-acrylonitrile). 2. An NMR Study , 1978 .

[10]  C. Pugh,et al.  Prop-2-yn-1-yl 2-Bromo-2-methylpropanoate: Identification and Suppression of Side Reactions of a Commonly Used Terminal Alkyne-Functional ATRP Initiator , 2015 .

[11]  K. Matyjaszewski,et al.  Effects of initiator structure on activation rate constants in ATRP , 2007 .

[12]  L. Schadler,et al.  Grafting Bimodal Polymer Brushes on Nanoparticles Using Controlled Radical Polymerization , 2012 .

[13]  K. Matyjaszewski,et al.  Synthesis of Molecular Brushes with Block Copolymer Side Chains Using Atom Transfer Radical Polymerization , 2001 .

[14]  Huihui Dong,et al.  Null‐Scattering Hybrid Particles Using Controlled Radical Polymerization , 2007 .

[15]  J. Lutz,et al.  Sequence-controlled polymerizations: the next Holy Grail in polymer science? , 2010 .

[16]  K. Matyjaszewski,et al.  Synthesis of well‐defined azido and amino end‐functionalized polystyrene by atom transfer radical polymerization , 1997 .

[17]  K. Matyjaszewski,et al.  Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes , 1999 .

[18]  Krzysztof Matyjaszewski,et al.  Step-Growth “Click” Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization , 2005 .

[19]  Shiping Zhu,et al.  Atom transfer radical polymerization of 2‐(dimethylamino)ethyl methacrylate in aqueous media , 2000 .

[20]  K. Matyjaszewski,et al.  Flexible particle array structures by controlling polymer graft architecture. , 2010, Journal of the American Chemical Society.

[21]  Steven P. Armes,et al.  Synthesis of Well-Defined, Polymer-Grafted Silica Particles by Aqueous ATRP , 2001 .

[22]  A. Ajdari,et al.  Scaling Law for Entropic Effects at Interfaces between Grafted Layers and Polymer Melts , 1998 .

[23]  K. Matyjaszewski,et al.  Block Copolymers by Transformation of “Living” Carbocationic into “Living” Radical Polymerization , 1997 .

[24]  C. Boyer,et al.  Grafting of P(OEGA) Onto Magnetic Nanoparticles Using Cu(0) Mediated Polymerization: Comparing Grafting “from” and “to” Approaches in the Search for the Optimal Material Design of Nanoparticle MRI Contrast Agents , 2013 .

[25]  K. Matyjaszewski,et al.  Preparation of gradient copolymers via ATRP using a simultaneous reverse and normal initiation process. I. Spontaneous gradient , 2005 .

[26]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[27]  K. Matyjaszewski,et al.  Improving the “Livingness” of ATRP by Reducing Cu Catalyst Concentration , 2013 .

[28]  K. Matyjaszewski,et al.  Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms , 2013 .

[29]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[30]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[31]  K. Matyjaszewski,et al.  Synthesis of Styrene−Acrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization , 2002 .

[32]  C. Hawker,et al.  Metal-free atom transfer radical polymerization. , 2014, Journal of the American Chemical Society.

[33]  K. Matyjaszewski,et al.  Block copolymers by transformation of living ring-opening metathesis polymerization into controlled/living atom transfer radical polymerization , 1997 .

[34]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[35]  Krzysztof Matyjaszewski,et al.  Macromolecular engineering by atom transfer radical polymerization. , 2014, Journal of the American Chemical Society.

[36]  K. Matyjaszewski,et al.  ATRP under Biologically Relevant Conditions: Grafting from a Protein. , 2012, ACS macro letters.

[37]  Krzysztof Matyjaszewski,et al.  Polymers at interfaces : Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator , 1999 .

[38]  K. Matyjaszewski,et al.  Click Chemistry and ATRP: A Beneficial Union for the Preparation of Functional Materials , 2007 .

[39]  K. Koh,et al.  Fabrication of ordered arrays of gold nanoparticles coated with high-density polymer brushes. , 2003, Angewandte Chemie.

[40]  Q. Fu,et al.  A New Strategy for Preparation of Graft Copolymers via “Graft onto” by Atom Transfer Nitroxide Radical Coupling Chemistry: Preparation of Poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl-co-ethylene oxide)-graft-polystyrene and Poly(tert-butyl acrylate) , 2008 .

[41]  L. Schadler,et al.  Transparent luminescent silicone nanocomposites filled with bimodal PDMS-brush-grafted CdSe quantum dots , 2013 .

[42]  Yasuyuki Nakamura,et al.  Recent progress in the use of photoirradiation in living radical polymerization , 2013 .

[43]  K. Matyjaszewski,et al.  Role of Polymer Graft Architecture on the Acoustic Eigenmode Formation in Densely Polymer-Tethered Colloidal Particles. , 2014, ACS macro letters.

[44]  M. Ilcikova,et al.  Photochemically Mediated Atom Transfer Radical Polymerization of Methyl Methacrylate Using ppm Amounts of Catalyst , 2012 .

[45]  Ying Li,et al.  Bimodal surface ligand engineering: the key to tunable nanocomposites. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[46]  C. Boyer,et al.  Synthesis of multi-block copolymer stars using a simple iterative Cu(0)-mediated radical polymerization technique , 2012 .

[47]  K. Matyjaszewski The synthesis of functional star copolymers as an illustration of the importance of controlling polymer structures in the design of new materials , 2003 .

[48]  Sie Chin Tjong,et al.  STRUCTURAL AND MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES , 2006 .

[49]  K. Matyjaszewski,et al.  Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene , 2006 .

[50]  K. Matyjaszewski,et al.  Photoirradiated Atom Transfer Radical Polymerization with an Alkyl Dithiocarbamate at Ambient Temperature , 2010 .

[51]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[52]  R. Vaia,et al.  Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends. , 2014, ACS applied materials & interfaces.

[53]  K. Matyjaszewski,et al.  Structure–Reactivity Correlation in “Click” Chemistry: Substituent Effect on Azide Reactivity , 2008 .

[54]  K. Matyjaszewski,et al.  Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP , 2012 .

[55]  Harm-Anton Klok,et al.  Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. , 2009, Chemical reviews.

[56]  Krzysztof Matyjaszewski,et al.  How are radicals (re)generated in photochemical ATRP? , 2014, Journal of the American Chemical Society.

[57]  Krzysztof Matyjaszewski,et al.  Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/“Living” Radical Polymerization , 2001 .

[58]  K. Matyjaszewski,et al.  Atom transfer radical polymerization in aqueous dispersed media , 2009 .

[59]  D. R. Paul,et al.  Binary Interaction Energy Densities for Blends of Styrene/Acrylonitrile Copolymers with Methyl Methacrylate/n-Alkyl Acrylate Copolymers , 2002 .

[60]  Thomas Maschmeyer,et al.  Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization. , 2013, Chemical communications.

[61]  Q. Fu,et al.  One-Pot Synthesis of ABC Type Triblock Copolymers via a Combination of “Click Chemistry” and Atom Transfer Nitroxide Radical Coupling Chemistry , 2008 .

[62]  L. Schadler,et al.  Bimodal “matrix-free” polymer nanocomposites , 2015 .

[63]  Gaohua Zhu,et al.  Iron-Mediated ICAR ATRP of Methyl Methacrylate , 2011 .

[64]  K. Matyjaszewski,et al.  Zerovalent Metals in Controlled/“Living” Radical Polymerization , 1997 .

[65]  A. Müller,et al.  Amphiphilic Cylindrical Core−Shell Brushes via a “Grafting From” Process Using ATRP , 2001 .

[66]  Krzysztof Matyjaszewski,et al.  Effect of ligand structure on activation rate constants in ATRP , 2006 .

[67]  K. Koh,et al.  Synthesis of Monodisperse Silica Particles Coated with Well-Defined, High-Density Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization , 2005 .

[68]  M. Daoud,et al.  Star shaped polymers : a model for the conformation and its concentration dependence , 1982 .

[69]  L. Schadler,et al.  Thermomechanical Properties of Bimodal Brush Modified Nanoparticle Composites , 2013 .

[70]  K. Matyjaszewski,et al.  Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization of Acrylates at Ambient Temperature , 1998 .

[71]  B. Sumerlin Proteins as Initiators of Controlled Radical Polymerization: Grafting-from via ATRP and RAFT. , 2012, ACS macro letters.

[72]  K. Matyjaszewski,et al.  Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents , 2006, Proceedings of the National Academy of Sciences.

[73]  L. Tung,et al.  Calibration of instrumental spreading for GPC , 1969 .

[74]  T. Fukuda,et al.  Suspensions of Silica Particles Grafted with Concentrated Polymer Brush: Effects of Graft Chain Length on Brush Layer Thickness and Colloidal Crystallization , 2007 .

[75]  Krzysztof Matyjaszewski,et al.  Transition metal catalysts for controlled radical polymerization , 2010 .

[76]  Krzysztof Matyjaszewski,et al.  Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives , 2012 .

[77]  R. Jin,et al.  One-pot synthesis of robust core/shell gold nanoparticles. , 2008, Journal of the American Chemical Society.

[78]  K. Matyjaszewski,et al.  Photoinduced Metal-Free Atom Transfer Radical Polymerization of Acrylonitrile. , 2015, ACS macro letters.

[79]  D. Gigmes,et al.  3.10 - Nitroxide-Mediated Polymerization , 2012 .

[80]  J. Dybal,et al.  Bottlebrush‐shaped copolymers with cellulose diacetate backbone by a combination of ring opening polymerization and ATRP , 2008 .

[81]  H. Fischer The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. , 2001, Chemical reviews.

[82]  Gurjaspreet Singh,et al.  Synthesis of polyfunctional triethoxysilanes by ‘click silylation’ , 2014 .

[83]  Krzysztof Matyjaszewski,et al.  Synthesis and characterization of organic/inorganic hybrid nanoparticles: Kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films , 2003 .

[84]  William F. M. Daniel,et al.  Molecular Bottlebrushes with Bimodal Length Distribution of Side Chains , 2015 .

[85]  K. Matyjaszewski,et al.  Visible Light and Sunlight Photoinduced ATRP with ppm of Cu Catalyst. , 2012, ACS macro letters.

[86]  James M Tour,et al.  "Hairy" single-walled carbon nanotubes prepared by atom transfer radical polymerization. , 2007, Small.

[87]  M. Jaroniec,et al.  Grafting Monodisperse Polymer Chains from Concave Surfaces of Ordered Mesoporous Silicas , 2008 .

[88]  Qingmei Zhou,et al.  Synthesis and Hierarchical Self-Assembly of Rod−Rod Block Copolymers via Click Chemistry between Mesogen-Jacketed Liquid Crystalline Polymers and Helical Polypeptides , 2010 .

[89]  K. Matyjaszewski,et al.  Stimuli-responsive molecular brushes , 2010 .

[90]  K. Matyjaszewski,et al.  Synthesis of azido end-functionalized polyacrylates via atom transfer radical polymerization , 1998 .

[91]  T. Fukuda,et al.  Gel permeation chromatographic determination of activation rate constants in nitroxide‐controlled free radical polymerization, 1. Direct analysis by peak resolution , 1997 .