Tracking and Linking of Microparticle Trajectories During Mode-Coupling Induced Melting in a Two-Dimensional Complex Plasma Crystal

In this article, a strategy to track microparticles and link their trajectories adapted to the study of the melting of a quasi two-dimensional complex plasma crystal induced by the mode-coupling instability is presented. Because of the three-dimensional nature of the microparticle motions and the inhomogeneities of the illuminating laser light sheet, the scattered light intensity can change significantly between two frames, making the detection of the microparticles and the linking of their trajectories quite challenging. Thanks to a two-pass noise removal process based on Gaussian blurring of the original frames using two different kernel widths, the signal-to-noise ratio was increased to a level that allowed a better intensity thresholding of different regions of the images and, therefore, the tracking of the poorly illuminated microparticles. Then, by predicting the positions of the microparticles based on their previous positions, long particle trajectories could be reconstructed, allowing accurate measurement of the evolution of the microparticle energies and the evolution of the monolayer properties.

[1]  Erik Meijering,et al.  Methods for cell and particle tracking. , 2012, Methods in enzymology.

[2]  E. Thomas Direct measurements of two-dimensional velocity profiles in direct current glow discharge dusty plasmas , 1999 .

[3]  D. Dubin The phonon wake behind a charge moving relative to a two-dimensional plasma crystal , 2000 .

[4]  Casper van der Wel,et al.  Automated tracking of colloidal clusters with sub-pixel accuracy and precision , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  S. Nunomura,et al.  Instability of Dust Particles in a Coulomb Crystal due to Delayed Charging , 1999 .

[6]  C. Ticos,et al.  High-speed imaging of dust particles in plasma , 2012, Journal of Plasma Physics.

[7]  G. Morfill,et al.  Wave spectra in solid and liquid complex (dusty) plasmas. , 2005, Physical review letters.

[8]  Salman S Rogers,et al.  Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight , 2007, Physical biology.

[9]  P. Caselli,et al.  IMPULSIVE SPOT HEATING AND THERMAL EXPLOSION OF INTERSTELLAR GRAINS REVISITED , 2015, 1503.05012.

[10]  G. Morfill,et al.  Complex plasmas: An interdisciplinary research field , 2009 .

[11]  G. Morfill,et al.  Synchronization of particle motion induced by mode coupling in a two-dimensional plasma crystal. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  A. Piel,et al.  Measurement of the Wakefield Attraction for “Dust Plasma Molecules” , 2000 .

[13]  T. Hall,et al.  Full melting of a two-dimensional complex plasma crystal triggered by localized pulsed laser heating. , 2018, Physical review. E.

[14]  Peters,et al.  Structure and stability of the plasma crystal. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  E. Thomas,et al.  Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma , 2004 .

[16]  B. James,et al.  Sheath measurement in rf-discharge plasma with dust grains , 2001 .

[17]  B. Liu,et al.  Errors in particle tracking velocimetry with high-speed cameras. , 2011, The Review of scientific instruments.

[18]  G. Morfill,et al.  Mode-coupling instability of two-dimensional plasma crystals , 2009 .

[19]  A. Piel,et al.  Plasma Crystal Melting: A Nonequilibrium Phase Transition , 1998 .

[20]  Samsonov,et al.  Transverse waves in a two-dimensional screened-coulomb crystal (Dusty plasma) , 2000, Physical review letters.

[21]  Bin Liu,et al.  Accurate particle position measurement from images. , 2007, The Review of scientific instruments.

[22]  G. Morfill,et al.  Direct observation of mode-coupling instability in two-dimensional plasma crystals. , 2010, Physical review letters.

[23]  Jason F. Ralph,et al.  Tracking interacting dust: comparison of tracking and state estimation techniques for dusty plasmas , 2010, Defense + Commercial Sensing.

[24]  Melzer,et al.  Experimental investigation of the melting transition of the plasma crystal. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  G. Morfill,et al.  Rotating electric fields in complex (dusty) plasmas , 2009 .

[26]  J. Goree,et al.  Diagnostics for transport phenomena in strongly coupled dusty plasmas , 2013 .

[27]  G. Morfill,et al.  Vertical wave packets observed in a crystallized hexagonal monolayer complex plasma. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Chu,et al.  Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. , 1994, Physical review letters.

[29]  O. Havnes,et al.  Cooling by dust in levitation experiments and its effect on dust cloud equilibrium profiles , 1996 .

[30]  Samsonov,et al.  Mach cone shocks in a two-dimensional Yukawa solid using a complex plasma , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[32]  T. Hyde,et al.  Dispersion properties of the out-of-plane transverse wave in a two-dimensional Coulomb crystal. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  G. Morfill,et al.  Supersonic dislocations observed in a plasma crystal. , 2007, Physical review letters.

[34]  S. Yurchenko,et al.  Thermoacoustic Instability in Two-Dimensional Fluid Complex Plasmas. , 2018, Physical review letters.

[35]  William J. Godinez,et al.  Objective comparison of particle tracking methods , 2014, Nature Methods.

[36]  C. Rath,et al.  Synchronization of particle motion in compressed two-dimensional plasma crystals , 2015, 1507.04480.

[37]  G. Morfill,et al.  Melting dynamics of a plasma crystal , 1996, Nature.

[38]  G. Morfill,et al.  Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: in-depth view , 2011, 1105.6223.

[39]  J. Goree,et al.  Transverse optical mode in a one-dimensional Yukawa chain. , 2003, Physical review letters.

[40]  G. Morfill,et al.  First direct measurement of optical phonons in 2D plasma crystals. , 2009, Physical review letters.

[41]  G. Morfill,et al.  Nonlinear regime of the mode-coupling instability in 2D plasma crystals , 2014, 1402.5994.

[42]  J. Goree,et al.  Heat transport in a two-dimensional complex (dusty) plasma at melting conditions. , 2007, Physical review letters.

[43]  J. Goree,et al.  Plasma crystal: Coulomb crystallization in a dusty plasma. , 1994, Physical review letters.

[44]  O. Ishihara,et al.  Wake potential of a dust grain in a plasma with ion flow , 1997 .

[45]  G. Morfill,et al.  Anisotropic dust lattice modes. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  T. Hyde,et al.  Digital imaging and analysis of dusty plasmas , 2003, physics/0307086.

[47]  E. Thomas,et al.  Applications of stereoscopic particle image velocimetry: Dust acoustic waves and velocity space distribution functionsa) , 2006 .

[48]  J. Goree,et al.  Nonlinear longitudinal waves in a two-dimensional screened Coulomb crystal. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Samsonov,et al.  Laser-excited mach cones in a dusty plasma crystal , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  J. Goree,et al.  Phonon spectrum in a plasma crystal. , 2002, Physical review letters.

[51]  André Bouchoule,et al.  Dusty plasmas : physics, chemistry, and technological impacts in plasma processing , 2000 .

[52]  T. Hyde,et al.  Mode-coupling instability in a single-layer complex plasma crystal: Strong damping regime , 2018, Physics of Plasmas.

[53]  Gregor E. Morfill,et al.  Compact dislocation clusters in a two-dimensional highly ordered complex plasma , 2012 .