Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI2 (TOP-PbI2) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

[1]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[2]  A. Samanta,et al.  Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). , 2017, Nanoscale.

[3]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[4]  Kai Zhu,et al.  Comparison of Recombination Dynamics in CH3NH3PbBr3 and CH3NH3PbI3 Perovskite Films: Influence of Exciton Binding Energy. , 2015, The journal of physical chemistry letters.

[5]  Arthur J. Nozik,et al.  Size-Dependent Spectroscopy of InP Quantum Dots , 1997 .

[6]  Q. Akkerman,et al.  Changing the Dimensionality of Cesium Lead Bromide Nanocrystals by Reversible Postsynthesis Transformations with Amines , 2017, Chemistry of materials : a publication of the American Chemical Society.

[7]  Qingsong Shan,et al.  50‐Fold EQE Improvement up to 6.27% of Solution‐Processed All‐Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control , 2017, Advanced materials.

[8]  Guohua Wu,et al.  Air Stable PbSe Colloidal Quantum Dot Heterojunction Solar Cells: Ligand-Dependent Exciton Dissociation, Recombination, Photovoltaic Property, and Stability , 2016 .

[9]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[10]  G. Conibeer,et al.  Investigation of anti-solvent induced optical properties change of cesium lead bromide iodide mixed perovskite (CsPbBr3-xIx) quantum dots. , 2017, Journal of colloid and interface science.

[11]  Lioz Etgar,et al.  Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution. , 2016, Nanoscale.

[12]  John R. Van Wazer,et al.  Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates , 1973 .

[13]  S. Rosenthal,et al.  Synthesis of Ultrasmall and Magic-Sized CdSe Nanocrystals , 2013 .

[14]  Clare E. Rowland,et al.  Bright Type II Quantum Dots , 2015 .

[15]  H. Momose,et al.  Huge suppression of charge recombination in P3HT-ZnO organic-inorganic hybrid solar cells by locating dyes at the ZnO/P3HT interfaces. , 2013, Physical chemistry chemical physics : PCCP.

[16]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[17]  T. Gramstad,et al.  Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands , 1976 .

[18]  Yuan Gao,et al.  Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands. , 2015, Journal of the American Chemical Society.

[19]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[20]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[21]  Richard H. Friend,et al.  Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. , 2016, Journal of the American Chemical Society.

[22]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[23]  Liang Li,et al.  Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging , 2009 .

[24]  S. Hayase,et al.  Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[25]  Chang Yoon,et al.  Linear Network Model of Gene Regulation for the Yeast Cell Cycle , 2004 .

[26]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[27]  Y. Kanemitsu,et al.  Dynamics of nonlinear blue photoluminescence and Auger recombination in SrTiO3 , 2008 .

[28]  Yasuhiro Yamada,et al.  Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. , 2014, Journal of the American Chemical Society.

[29]  Feng Zhang,et al.  Colloidal Synthesis of Air-Stable CH3NH3PbI3 Quantum Dots by Gaining Chemical Insight into the Solvent Effects , 2017 .

[30]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[31]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[32]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[33]  William W. Yu,et al.  Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. , 2016, The journal of physical chemistry letters.

[34]  Frank W. Wise,et al.  Optical Properties of Colloidal PbSe Nanocrystals , 2002 .

[35]  Jaehyun Park,et al.  CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence , 2011 .

[36]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[37]  Iftikhar Ahmad,et al.  First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M¼Cl, Br, I) , 2011 .

[38]  Oleksandr Voznyy,et al.  Efficient Luminescence from Perovskite Quantum Dot Solids. , 2015, ACS applied materials & interfaces.

[39]  A Paul Alivisatos,et al.  Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. , 2016, ACS nano.

[40]  Taeghwan Hyeon,et al.  The surface science of nanocrystals. , 2016, Nature materials.

[41]  H. Demir,et al.  Inorganic Halide Perovskites for Efficient Light-Emitting Diodes. , 2015, The journal of physical chemistry letters.

[42]  C. H. Park,et al.  First-Principles Study of the Structural and the Electronic Properties of the Lead-Halide-Based Inorganic-Organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I) , 2004 .

[43]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[44]  Haibo Zeng,et al.  Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). , 2016 .

[45]  Haizheng Zhong,et al.  Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. , 2015, ACS Nano.

[46]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[47]  M. Green,et al.  Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation , 2016 .

[48]  Joseph K. Gallaher,et al.  The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals , 2017 .

[49]  In-yeal Lee,et al.  Colloidal Synthesis of SnSe Nanocolumns through Tin Precursor Chemistry and Their Optoelectrical Properties , 2012 .

[50]  E. Weiss,et al.  Chemical, Structural, and Quantitative Analysis of the Ligand Shells of Colloidal Quantum Dots , 2013 .

[51]  R. Rai Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films , 2013 .

[52]  J. Q. Grim,et al.  Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route , 2014 .

[53]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[54]  Aifei Wang,et al.  Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature. , 2016, ACS nano.

[55]  Ou Chen,et al.  Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. , 2013, Nature materials.

[56]  Prashant V Kamat,et al.  Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3-x through Halide Exchange. , 2016, Journal of the American Chemical Society.

[57]  F. Fabregat‐Santiago,et al.  Recombination in quantum dot sensitized solar cells. , 2009, Accounts of chemical research.

[58]  Hao Zhang,et al.  CsPb x Mn 1 − x Cl 3 Perovskite Quantum Dots with High Mn Substitution Ratio , 2017 .

[59]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[60]  F. Liu,et al.  Ex Situ CdSe Quantum Dot-Sensitized Solar Cells Employing Inorganic Ligand Exchange To Boost Efficiency , 2014 .

[61]  Mark A Green The nature of quantum dot capping ligands , 2010 .

[62]  Min-Sang Lee,et al.  All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. , 2016, Chemical communications.

[63]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[64]  Abhishek Swarnkar,et al.  Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. , 2015, Angewandte Chemie.

[65]  John A. Ripmeester,et al.  The Effect of Dispersion Media on Photoluminescence of Colloidal CdSe Nanocrystals Synthesized from TOP , 2005 .

[66]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[67]  K. Yoshino,et al.  Charge transfer and recombination at the metal oxide/CH3NH3PbClI2/spiro-OMeTAD interfaces: uncovering the detailed mechanism behind high efficiency solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[68]  A. Alivisatos,et al.  Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. , 2007, Journal of the American Chemical Society.

[69]  Larissa Levina,et al.  Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. , 2008, ACS nano.

[70]  R. Griffin,et al.  Investigation of the surface morphology of capped CdSe nanocrystallites by 31P nuclear magnetic resonance , 1994 .

[71]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[72]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[73]  Oleksandr Voznyy,et al.  Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression. , 2015, ACS nano.

[74]  Angshuman Nag,et al.  Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals , 2016 .

[75]  Tianquan Lian,et al.  Ultrafast Interfacial Electron and Hole Transfer from CsPbBr3 Perovskite Quantum Dots. , 2015, Journal of the American Chemical Society.

[76]  Jiangcong Zhou,et al.  Perovskite CsPbBr1.2I1.8 quantum dot alloying for application in white light-emitting diodes with excellent color rendering index , 2017 .

[77]  Tze Chien Sum,et al.  High‐Quality Whispering‐Gallery‐Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets , 2016 .

[78]  J. Bisquert,et al.  High-efficiency "green" quantum dot solar cells. , 2014, Journal of the American Chemical Society.

[79]  P. Ghosh,et al.  Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. , 2016, Nano letters.

[80]  Yin Song,et al.  Structure‐Tuned Lead Halide Perovskite Nanocrystals , 2016, Advanced materials.

[81]  F. Wise,et al.  Electrogenerated chemiluminescence from PbS quantum dots. , 2009, Nano letters.