The Role of Chromium on the Structural, Electronic and Photoluminescence properties of Alumina: Theoretical and Experimental Study

[1]  J. Dawes,et al.  Lifetime-Engineered Ruby Nanoparticles (Tau-Rubies) for Multiplexed Imaging of μ-Opioid Receptors. , 2021, ACS Sensors.

[2]  Sonika Singh,et al.  Structural, optical and morphological features of combustion derived Ba3Y4O9: Dy3+ nanocrystalline phosphor with white light emission , 2020 .

[3]  A. Wahba,et al.  Structural, optical, mechanical, and electronic properties of Cr-doped alumina , 2020, Journal of Materials Science: Materials in Electronics.

[4]  S. Limpijumnong,et al.  First‐Principles Study of Chromium Defects in α‐Al2O3: The Origin of Red Color in Ruby , 2020, physica status solidi (b).

[5]  L. Escobar-Alarcón,et al.  X-ray diffraction Rietveld structural analysis of Au–TiO2 powders synthesized by sol–gel route coupled to microwave and sonochemistry , 2020, Journal of Sol-Gel Science and Technology.

[6]  B. Nagabhushana,et al.  Optical transition probabilities of white light emitting Sr2SiO4:Dy3+ nanophosphors for lighting applications using Judd−Ofelt analysis , 2019, Journal of Luminescence.

[7]  K. Ogasawara,et al.  Comparative Study on R-line and U-band Energies of Ruby Estimated from One-Electron and Many-Electron First-Principles Approaches , 2019, Journal of Physics: Conference Series.

[8]  B. Goodman,et al.  Luminescence and EPR properties of high quality ruby crystals prepared by the optical floating zone method , 2019, Optical Materials.

[9]  N. Sharma,et al.  Effect of silver dopant on structural and optical properties of ZnO nanoparticles , 2019, Applied Physics A.

[10]  Xin Guan,et al.  Photoluminescence characteristics and energy transfer mechanism of Eu3+:NaY(WO4)2 microparticles , 2019, Journal of Materials Science: Materials in Electronics.

[11]  Jun Wang,et al.  Incorporation of Zn2+ ions into Al2O3:Er3+/Yb3+ transparent ceramics: An effective way to enhance upconversion and near infrared emission , 2018, Journal of Luminescence.

[12]  Xiaokun Zhang,et al.  Effects of Cr3+ concentration on the crystallinity and optical properties of Cr-doped Al2O3 powders by solid-state reaction method , 2018, IOP Conference Series: Materials Science and Engineering.

[13]  H. A. Rafaie,et al.  FABRICATION AND CHARACTERIZATION OF RUBY NANOPARTICLES , 2018, Malaysian Journal of Analytical Science.

[14]  Jian Wang,et al.  Direct Observation of Cr3+ 3d States in Ruby: Toward Experimental Mechanistic Evidence of Metal Chemistry , 2018, The journal of physical chemistry. A.

[15]  A. Ashour,et al.  Dosimetric properties of Cr doped Al 2 O 3 nanophosphors , 2018 .

[16]  A. Yazdani,et al.  The variation of Eg-shape dependence of NiO nanoparticles by the variation of annealing temperature , 2018 .

[17]  E. Goldys,et al.  Development of Bright and Biocompatible Nanoruby and Its Application to Background-Free Time-Gated Imaging of G-Protein-Coupled Receptors. , 2017, ACS applied materials & interfaces.

[18]  Desmond W. M. Lau,et al.  Brightness and Photostability of Emerging Red and Near‐IR Fluorescent Nanomaterials for Bioimaging , 2016 .

[19]  A. Pasquarello,et al.  Oxygen defects in amorphous Al2O3: A hybrid functional study , 2016 .

[20]  W. A. W. Razali,et al.  Wide‐field time‐gated photoluminescence microscopy for fast ultrahigh‐sensitivity imaging of photoluminescent probes , 2016, Journal of biophotonics.

[21]  S. M. Babu,et al.  Photoluminescence properties of Eu3+:RbGd(WO4)2 red phosphors prepared by sol–gel method , 2016 .

[22]  F. Ahmed,et al.  In-situ X-ray diffraction study of alumina α-Al2O3 thermal behavior under dynamic vacuum and constant flow of nitrogen , 2016 .

[23]  Xinyang Huang Preparation and luminescence characteristics of monazite Eu3+:LaPO4 nanocrystals in NH4NO3 molten salt , 2015 .

[24]  B. Nagabhushana,et al.  Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles , 2015 .

[25]  G. Chandrasekaran,et al.  Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles , 2015 .

[26]  M. Eizenberg,et al.  The physical origin of dispersion in accumulation in InGaAs based metal oxide semiconductor gate stacks , 2015 .

[27]  W. A. W. Razali,et al.  Large-scale production and characterization of biocompatible colloidal nanoalumina. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[28]  P. Marcus,et al.  Structural, Magnetic, Electronic, Defect, and Diffusion Properties of Cr2O3: A DFT+U Study , 2014 .

[29]  K. Nemade,et al.  Low temperature synthesis of semiconducting α-Al2O3 quantum dots , 2014 .

[30]  N. Kamarulzaman,et al.  Increased conductivities of Cr doped Al2−xCrxO3 powders due to band gap narrowing , 2014 .

[31]  P. D. Sahare,et al.  Structural and photoluminescent properties of Al2O3: Cr3+ nanoparticles via solution combustion synthesis method , 2014 .

[32]  Dianguang Liu Effects of Cr content and morphology on the luminescence properties of the Cr-doped alpha-Al2O3 powders , 2013 .

[33]  E. Goldys,et al.  Nano‐Ruby: A Promising Fluorescent Probe for Background‐Free Cellular Imaging , 2013 .

[34]  M. Holland,et al.  Titania/alumina bilayer gate insulators for InGaAs metal-oxide-semiconductor devices , 2011 .

[35]  Jong-Wan Park,et al.  Diffusion of chromium in sapphire: The effects of electron beam irradiation , 2011 .

[36]  Jie Liu,et al.  Investigation of near infrared reflectance by tuning the shape of SnO2 nanoparticles , 2010 .

[37]  Liping Lu,et al.  Preparation and luminescent properties of Cr3+:Al2O3 nano-powders by low-temperature combustion synthesis , 2009 .

[38]  Emily A Carter,et al.  Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. , 2008, The Journal of chemical physics.

[39]  B. Atakan,et al.  Phosphorescence properties of sol–gel derived ruby measured as functions of temperature and Cr3+ content , 2008 .

[40]  Emily A. Carter,et al.  Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations , 2007 .

[41]  D. R. Mishra,et al.  Luminescence properties of α-Al2O3:C crystal with intense low temperature TL peak , 2007 .

[42]  Tzu-Ying Lin,et al.  Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure , 2006 .

[43]  X. Qiu,et al.  Nature of the abnormal band gap narrowing in highly crystalline Zn1-xCoxO nanorods , 2006 .

[44]  J. Qiu,et al.  Upconversion luminescence from 2E state of Cr3+ in Al2O3 crystal by infrared femtosecond laser irradiation. , 2005, Optics express.

[45]  T. Ungár Microstructural parameters from X-ray diffraction peak broadening , 2004 .

[46]  J. Hafner,et al.  Ab initio study of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations , 2004 .

[47]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[48]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[49]  R. Franchy,et al.  Band gap of amorphous and well-ordered Al2O3 on Ni3Al(100) , 2001 .

[50]  Tamás Ungár,et al.  The effect of dislocation contrast on x‐ray line broadening: A new approach to line profile analysis , 1996 .

[51]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[52]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[53]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[54]  He Tang,et al.  Synthesis and photoluminescence properties of NUV-excited NaBi(MoO4)2: Sm3+ phosphors for white light emitting diodes , 2022, Optics & Laser Technology.

[55]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .