Spare parts classification in industrial manufacturing using the dominance-based rough set approach

Classification is one of the critical issues in the operations management of spare parts. The issue of managing spare parts involves multiple criteria to be taken into consideration, and therefore, a number of approaches exists that consider criteria such as criticality, price, demand, lead time, and obsolescence, to name a few. In this paper, we first review proposals to deal with inventory control. We then propose a three-phase multicriteria classification framework for spare parts management using the dominance-based rough set approach (DRSA). In the first phase, a set of ‘if–then’ decision rules is generated from historical data using the DRSA. The generated rules are then validated in the second phase by using both the automated and manual approaches, including cross-validation and feedback assessments by the decision maker. The third and final phase is to classify an unseen set of spare parts in a real setting. The proposed approach has been successfully applied to data collected from a manufacturing company in China. The proposed framework was practically tested on different spare parts and, based on the feedback received from the industry experts, 96% of the spare parts were correctly classified. Furthermore, the cross-validation results show that the proposed approach significantly outperforms other well-known classification methods. The proposed approach has several important characteristics that distinguish it from existing ones: (i) it is a learning-set based analysis approach; (ii) it uses a powerful multicriteria classification method, namely the DRSA; (iii) it validates the generated decision rules with multiple strategies; and (iv) it actively involves the decision maker during all the steps of the decision making process.

[1]  Min-Chun Yu,et al.  Multi-criteria ABC analysis using artificial-intelligence-based classification techniques , 2011, Expert Syst. Appl..

[2]  Gülşen Aydın Keskin,et al.  Multiple Criteria ABC Analysis with FCM Clustering , 2013 .

[3]  Masahiro Inuiguchi,et al.  Empirical Risk Minimization for Variable Consistency Dominance-Based Rough Set Approach , 2015, RSFDGrC.

[4]  Ching-Wu Chu,et al.  Controlling inventory by combining ABC analysis and fuzzy classification , 2008, Comput. Ind. Eng..

[5]  Salvatore Greco,et al.  Multi-criteria classification - A new scheme for application of dominance-based decision rules , 2007, Eur. J. Oper. Res..

[6]  Juscelino Almeida Dias,et al.  A multiple criteria sorting method where each category is characterized by several reference actions: The Electre Tri-nC method , 2012, Eur. J. Oper. Res..

[7]  Theresa Beaubouef,et al.  Rough Sets , 2019, Lecture Notes in Computer Science.

[8]  Jerrold H. May,et al.  Providing Design Assistance: A Case-Based Approach , 1996, Inf. Syst. Res..

[9]  Jianchao Zeng,et al.  Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems , 2017, Eur. J. Oper. Res..

[10]  S. M. Hatefi,et al.  Multi-criteria ABC inventory classification with mixed quantitative and qualitative criteria , 2014 .

[11]  Jin-Xiao Chen Peer-estimation for multiple criteria ABC inventory classification , 2011, Comput. Oper. Res..

[12]  Hyerim Bae,et al.  Cross-evaluation-based weighted linear optimization for multi-criteria ABC inventory classification , 2014, Comput. Ind. Eng..

[13]  Golam Kabir,et al.  Multi-criteria inventory classification through integration of fuzzy analytic hierarchy process and artificial neural network , 2013 .

[14]  Abdollah Hadi-Vencheh,et al.  A fuzzy AHP-DEA approach for multiple criteria ABC inventory classification , 2011, Expert Syst. Appl..

[15]  Salem Chakhar,et al.  GIS-Based Multicriteria Evaluation Approach for Corridor Siting , 2012 .

[16]  Salvatore Greco,et al.  Rough Sets in Decision Making , 2009, Encyclopedia of Complexity and Systems Science.

[17]  Nizar Sakr,et al.  Spare parts stocking analysis using genetic programming , 2016, Eur. J. Oper. Res..

[18]  Murugan Anandarajan,et al.  Classifying inventory using an artificial neural network approach , 2002 .

[19]  Keith W. Hipel,et al.  A case-based distance model for multiple criteria ABC analysis , 2008, Comput. Oper. Res..

[20]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[21]  H. Altay Güvenir,et al.  Multicriteria inventory classification using a genetic algorithm , 1998, Eur. J. Oper. Res..

[22]  Janne Huiskonen,et al.  Maintenance spare parts logistics: Special characteristics and strategic choices , 2001 .

[23]  Salvatore Greco,et al.  Monotonic Variable Consistency Rough Set Approaches , 2009, Int. J. Approx. Reason..

[24]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[25]  Aris A. Syntetos,et al.  Classification for forecasting and stock control: a case study , 2008, J. Oper. Res. Soc..

[26]  Luis C. Dias,et al.  Evaluation and Decision Models With Multiple Criteria: Case Studies , 2015 .

[27]  Wan Lung Ng,et al.  Production , Manufacturing and Logistics A simple classifier for multiple criteria ABC analysis , 2006 .

[28]  Salvatore Greco,et al.  Variable Consistency Model of Dominance-Based Rough Sets Approach , 2000, Rough Sets and Current Trends in Computing.

[29]  Salem Chakhar,et al.  FLORAIDE, a new decision-making tool for weed species , 2011 .

[30]  Rita Gamberini,et al.  New AHP-based approaches for multi-criteria inventory classification , 2014 .

[31]  Ozan Çakir,et al.  A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology , 2008, Expert Syst. Appl..

[32]  Inès Saad,et al.  Dominance-based rough set approach for group decisions , 2016, Eur. J. Oper. Res..

[33]  Ramakrishnan Ramanathan,et al.  ABC inventory classification with multiple-criteria using weighted linear optimization , 2006, Comput. Oper. Res..

[34]  Bijan Sarkar,et al.  Distance-based consensus method for ABC analysis , 2007 .

[35]  Salem Chakhar,et al.  Estimation of urban water supply issues at the local scale: a participatory approach , 2015, Climatic Change.

[36]  David L. Olson,et al.  Management of multicriteria inventory classification , 1992 .

[37]  Jianmin Zhao,et al.  Modeling Spare Parts Demands Forecast under Two-Dimensional Preventive Maintenance Policy , 2015 .

[38]  Salem Chakhar,et al.  Coupling GIS and Multi-Criteria Modeling to Support Post-Accident Nuclear Risk Evaluation . , 2015 .

[39]  Matjaz B. Juric,et al.  Interactive Aggregation/Disaggregation Dichotomic Sorting Procedure for Group Decision Analysis Based on the Threshold Model , 2008, Informatica.

[40]  Salvatore Greco,et al.  Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization , 2008, Multiobjective Optimization.

[41]  Itzhak Gilboa,et al.  Case-based knowledge and induction , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[42]  Yves Dallery,et al.  Including sustainability criteria into inventory models , 2012, Eur. J. Oper. Res..

[43]  Inès Saad,et al.  Dominance-based rough set approach for groups in multicriteria classification problems , 2012, Decis. Support Syst..

[44]  Morris A. Cohen,et al.  Operations related groups (ORGs): A clustering procedure for production/inventory systems , 1990 .

[45]  S. Greco,et al.  Multicriteria Classification by Dominance-Based Rough Set Approach ♦ ♦ ♦ Methodological Basis of the 4 eMka System , 2001 .

[46]  Luis C. Dias,et al.  An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI , 2002, Eur. J. Oper. Res..

[47]  Ling Wang,et al.  A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure , 2009, Eur. J. Oper. Res..

[48]  Jafar Rezaei,et al.  A rule-based multi-criteria approach to inventory classification , 2010 .

[49]  Roman Slowinski,et al.  Learnability in Rough Set Approaches , 2010, RSCTC.

[50]  Roman Słowiński,et al.  The Use of Rough Sets and Fuzzy Sets in MCDM , 1999 .

[51]  Salvatore Greco,et al.  Rough Set Analysis of Preference-Ordered Data , 2002, Rough Sets and Current Trends in Computing.

[52]  Xiuwu Liao,et al.  A classification approach based on the outranking model for multiple criteria ABC analysis , 2016 .

[53]  Golam Kabir,et al.  Multiple criteria inventory classification using fuzzy analytic hierarchy process , 2012 .

[54]  Ruud H. Teunter,et al.  A two-step method for forecasting spare parts demand using information on component repairs , 2012, Eur. J. Oper. Res..

[55]  Andi Sudiarso,et al.  A fuzzy logic approach to an integrated maintenance/production scheduling algorithm , 2002 .

[56]  Masahiro Inuiguchi,et al.  Empirical Risk Minimization for Variable Precision Dominance-Based Rough Set Approach , 2013, RSKT.

[57]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[58]  Ahmad Al Hanbali,et al.  Last time buy and repair decisions for spare parts , 2015, Eur. J. Oper. Res..

[59]  Z. Pawlak,et al.  Rough set approach to multi-attribute decision analysis , 1994 .

[60]  Salvatore Greco,et al.  An Overview of ELECTRE Methods and their Recent Extensions , 2013 .

[61]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[62]  Cengiz Kahraman,et al.  A multiattribute ABC classification model using fuzzy AHP , 2010, The 40th International Conference on Computers & Indutrial Engineering.

[63]  Abdollah Hadi-Vencheh,et al.  An improvement to multiple criteria ABC inventory classification , 2010, Eur. J. Oper. Res..

[64]  Graham K. Rand,et al.  Inventory Management and Production Planning and Scheduling (Third Edition) , 2001, J. Oper. Res. Soc..

[65]  Stefan Wager,et al.  Valuing Lead Time , 2013 .

[66]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[67]  Wojciech Kotlowski,et al.  Statistical Model for Rough Set Approach to Multicriteria Classification , 2007, PKDD.

[68]  S. Ali Torabi,et al.  ABC inventory classification in the presence of both quantitative and qualitative criteria , 2012, Comput. Ind. Eng..

[69]  Guoyin Wang,et al.  A Novel Method for Elimination of Inconsistencies in Ordinal Classification with Monotonicity Constraints , 2013, Fundam. Informaticae.

[70]  Davood Mohammaditabar,et al.  Inventory control system design by integrating inventory classification and policy selection , 2012 .

[71]  Roman Slowinski,et al.  Induction of Ordinal Classification Rules from Incomplete Data , 2012, RSCTC.

[72]  Ashraf Labib,et al.  Spare parts decision analysis - the missing link in CMMS's (Part 1) , 2001 .

[73]  Daniel Vanderpooten,et al.  Induction of decision rules in classification and discovery-oriented perspectives , 2001, Int. J. Intell. Syst..

[74]  Peng Zhou,et al.  A note on multi-criteria ABC inventory classification using weighted linear optimization , 2007, Eur. J. Oper. Res..

[75]  Banu Soylu,et al.  Multi-criteria inventory classification with reference items , 2014, Comput. Ind. Eng..

[76]  Jonathan Burton,et al.  Using the Analytic Hierarchy Process for ABC Analysis , 1993 .

[77]  Witold Pedrycz,et al.  Handbook of Data Mining and Knowledge Discovery , 2002 .

[78]  Bo Shen,et al.  Fuzzy-Logic-Based Control, Filtering, and Fault Detection for Networked Systems: A Survey , 2015 .

[79]  Hossein Jamshidi,et al.  Multi-Criteria ABC Inventory Classification: With Exponential Smoothing Weights , 2008 .

[80]  Jin-Xiao Chen,et al.  Multiple criteria ABC inventory classification using two virtual items , 2012 .

[81]  S. Greco,et al.  Rough set based processing of inconsistent information in decision analysis , 2000 .

[82]  Keith W. Hipel,et al.  A Rough Set Approach to Multiple Criteria ABC Analysis , 2008, Trans. Rough Sets.

[83]  Kalyanmoy Deb,et al.  Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead , 2008, Manag. Sci..

[84]  Salvatore Greco,et al.  Inductive discovery of laws using monotonic rules , 2012, Eng. Appl. Artif. Intell..

[85]  M. Zied Babai,et al.  Multi-criteria inventory classification: new consensual procedures , 2016 .

[86]  Lech Polkowski,et al.  Granular Computing in Decision Approximation - An Application of Rough Mereology , 2015, Intelligent Systems Reference Library.

[87]  L. Dias,et al.  ELECTRE TRI for Groups with Imprecise Information on Parameter Values , 2000 .

[88]  D. Clay Whybark,et al.  Implementing multiple criteria ABC analysis , 1987 .

[89]  Juscelino Almeida Dias,et al.  Laboratoire D'analyse Et Modélisation De Systèmes Pour L'aide À La Décision Cahier Du Lamsade 274 Electre Tri-c: a Multiple Criteria Sorting Method Based on Characteristic Reference Actions Electre Tri-c: a Multiple Criteria Sorting Method Based on Characteristic Reference Actions , 2022 .

[90]  Salvatore Greco,et al.  An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle , 2000, Rough Sets and Current Trends in Computing.

[91]  D. Clay Whybark,et al.  Multiple Criteria ABC Analysis , 1986 .