Design and Analysis of a DC–43.5-GHz Fully Integrated Distributed Amplifier Using GaAs HEMT–HBT Cascode Gain Stage

Design and analysis of a dc-43.5-GHz fully integrated distributed amplifier (DA) using a GaAs high electron-mobility transistor (HEMT) heterojunction bipolar transistor (HBT) cascode gain stage is presented in this paper. The proposed DA is fabricated in a stacked 2-μm InGaP/GaAs HBT, 0.5-μm AlGaAs/GaAs enhancement- and depletion-mode HEMT monolithic microwave integrated circuit technology. A modified m -derived network and an HEMT-HBT cascode amplifier with inductive peaking technique are investigated to enhance the bandwidth of the DA. The bias networks of the DA are fully integrated in a single chip without off-chip bias-T or bias components. The measured average small-signal gain is 8.5 dB. The measured minimum noise figure is 4.2 dB. The measured maximum output 1-dB compression point (P1 dB) and the maximum output third-order intercept point are 8 and 18 dBm, respectively. Moreover, the DA is successfully evaluated with an eye diagram measurement, and demonstrates good transmission quality.

[1]  D.C. Streit,et al.  A novel monolithic linearized HEMT LNA using HBT tuneable active feedback , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[2]  Youngwoo Kwon,et al.  High-gain direct-coupled matrix distributed amplifier using active feedback topology , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..

[3]  Bal Singh Virdee,et al.  Amplifier design for high efficiency performance , 2000 .

[4]  C. Cismaru,et al.  An InGaP/GaAs Merged HBT-FET (BiFET) Technology and Applications to the Design of Handset Power Amplifiers , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[5]  H.C. Yen,et al.  A single-chip 94-GHz frequency source using InP-based HEMT-HBT integration technology , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[6]  Bal Singh Virdee,et al.  Broadband Microwave Amplifiers , 2004 .

[7]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[8]  T. Shibata,et al.  A design technique for a 60 GHz-bandwidth distributed baseband amplifier IC module , 1994, IEEE J. Solid State Circuits.

[9]  Mau-Chung Frank Chang,et al.  A GaAs BiFET LSI technology , 1994, Proceedings of 1994 IEEE GaAs IC Symposium.

[10]  Hong-Yeh Chang,et al.  A 38% Tuning Bandwidth Low Phase Noise Differential Voltage Controlled Oscillator Using a 0.5 $\mu$m E/D-PHEMT Process , 2009, IEEE Microwave and Wireless Components Letters.

[11]  Kevin W. Kobayashi,et al.  Monolithic HEMT-HBT integration for novel microwave circuit applications , 1994, Proceedings of 1994 IEEE GaAs IC Symposium.

[12]  J. Shohat,et al.  10-Gb/s driver amplifier using a tapered gate line for improved input matching , 2005, IEEE Transactions on Microwave Theory and Techniques.

[13]  Kevin W. Kobayashi,et al.  An InP HEMT W-band amplifier with monolithically integrated HBT bias regulation , 1997 .

[14]  Bin Li,et al.  An InGaP/GaAs Merged HBT-FET (BiFET) Technology and Applications to the Design of Handset Power Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[15]  W. Heinrich,et al.  A 40 Gbps GaAs-HBT distributed amplifier with an over-f/sub T/ cut-off frequency: analytical and experimental study , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[16]  David D. Wentzloff,et al.  IEEE Transactions on Microwave Theory and Techniques and Antennas and Propagation Announce a Joint Special Issue on Ultra-Wideband (UWB) Technology , 2010 .

[17]  Kevin W. Kobayashi,et al.  A novel self-oscillating HEMT-HBT cascode VCO-mixer using an active tunable inductor , 1998 .

[18]  H. Schumacher,et al.  GaAs distributed amplifiers with up to 350 GHz gain-bandwidth product for 40 Gb/s LiNbO/sub 3/ modulator drivers , 2005, 2005 European Microwave Conference.

[19]  W. Heinrich,et al.  True Broadband Technique for On-Chip-Series Connection of TWAs Using Differential Distributed Amplifiers , 2009, IEEE Microwave and Wireless Components Letters.

[20]  R. Lefevre,et al.  DC-92 GHz ultra-broadband high gain InP HEMT amplifier with 410 GHz gain-bandwidth product , 2002 .

[21]  V. Kaman,et al.  InP-based high sensitivity pin/HEMT/HBT monolithic integrated optoelectronic receiver , 1998, Conference Proceedings. 1998 International Conference on Indium Phosphide and Related Materials (Cat. No.98CH36129).

[22]  K.W. Kobayashi Linearized Darlington Cascode Amplifier Employing GaAs PHEMT and GaN HEMT Technologies , 2007, IEEE Journal of Solid-State Circuits.

[23]  C. Meliani,et al.  Traveling-Wave Amplifiers in Transferred Substrate InP-HBT Technology , 2009, IEEE Transactions on Microwave Theory and Techniques.

[24]  Hong-Yeh Chang Design of Broadband Highly Linear IQ Modulator Using a 0.5$\mu$m E/D-PHEMT Process for Millimeter-Wave Applications , 2008, IEEE Microwave and Wireless Components Letters.

[25]  Kevin W. Kobayashi,et al.  GaAs HBT wideband matrix distributed and Darlington feedback amplifiers to 24 GHz , 1991 .

[26]  R. H. Walden,et al.  InP-based mixed device (HEMT/HBT) technology on planar substrate for high performance mixed-signal and optoelectronic circuits , 1997 .

[27]  Hyunchol Shin,et al.  Monolithic integration of AlGaAs/GaAs HBT and GaAs junction-gate floated electron channel field effect transistor using selective MOCVD growth , 1996, IEEE Microwave and Guided Wave Letters.

[28]  Kevin W. Kobayashi,et al.  A monolithically integrated HEMT-HBT low noise high linearity variable gain amplifier , 1996, IEEE J. Solid State Circuits.

[29]  Chau-Ching Chiong,et al.  A DC-21 GHz Low Imbalance Active Balun Using Darlington Cell Technique for High Speed Data Communications , 2009, IEEE Microwave and Wireless Components Letters.