Convex integration with constraints and applications to phase transitions and partial differential equations

Abstract.We study solutions of first order partial differential relations Du∈K, where u:Ω⊂ℝn→ℝm is a Lipschitz map and K is a bounded set in m×n matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of Du and second we replace Gromov’s P-convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our work was originally motivated by questions in the analysis of crystal microstructure and we establish the existence of a wide class of solutions to the two-well problem in the theory of martensite.

[1]  A. Cellina,et al.  On a problem of potential wells , 1995 .

[2]  Vladimir Sverak On the Problem of Two Wells , 1993 .

[3]  B. Dacorogna,et al.  General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases , 1997 .

[4]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[5]  S. Hart,et al.  Bi-convexity and bi-martingales , 1986 .

[6]  M. Gromov,et al.  Partial Differential Relations , 1986 .

[7]  Paolo Marcellini,et al.  Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre , 1996 .

[8]  John M. Ball,et al.  Strict convexity, strong ellipticity, and regularity in the calculus of variations , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  S. Müller Variational models for microstructure and phase transitions , 1999 .

[10]  Vladimir Scheffer,et al.  Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial differential equations and inequalities , 1974 .

[11]  Pablo Pedregal,et al.  Laminates and microstructure , 1993, European Journal of Applied Mathematics.

[12]  David Kinderlehrer,et al.  Equilibrium configurations of crystals , 1988 .

[13]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[14]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[15]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[16]  Darryl D. Holm,et al.  A nonlinear analysis of the averaged Euler equations and a new diffeomorphism group , 1999, chao-dyn/9903036.

[17]  Jirí Matousek,et al.  On Functional Separately Convex Hulls , 1998, Discret. Comput. Geom..

[18]  Paolo Marcellini,et al.  Cauchy-Dirichlet problem for first order nonlinear systems. (Sur le problème de Cauchy-Dirichlet pour les systèmes d' équationsnon linéaires du premier ordre.) , 1998 .

[19]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[20]  M. Gromov,et al.  CONVEX INTEGRATION OF DIFFERENTIAL RELATIONS. I , 1973 .

[21]  Paolo Marcellini,et al.  Théorèmes d" existence dans les cas scalaire et vectoriel pour les équations de Hamilton-Jacobi , 1996 .

[22]  J. Moser,et al.  On a partial differential equation involving the Jacobian determinant , 1990 .

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  Luc Tartar,et al.  Some Remarks on Separately Convex Functions , 1993 .

[25]  Functions with presribed singular values of the gradient , 1998 .