Arbitrary Quantum Signature Based on Local Indistinguishability of Orthogonal Product States

Digital signature plays an important role in cryptography. Many quantum digital signature (QDS) schemes have been proposed up to now since the security of classic digital signature (CDS) schemes becomes more and more vulnerable with the development of quantum computing algorithms. Most of the existing quantum signature schemes are based on probabilistic comparison of quantum states, which makes the schemes very complicated. In this paper, we propose a new QDS scheme based on local indistinguishability of orthogonal product states. In the scheme, the receiver cooperates with the arbitrator to verify the valid of the signature. The analysis of security and efficiency shows that our scheme is secure and efficient.

[1]  Li-Hua Gong,et al.  High-Efficient Arbitrated Quantum Signature Scheme Based on Cluster States , 2017 .

[2]  Fei Gao,et al.  Quantum nonlocality of multipartite orthogonal product states , 2016 .

[3]  Xin-Yue Li,et al.  A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy , 2016 .

[4]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[5]  Qin Li,et al.  Arbitrated quantum signature scheme using Bell states , 2009 .

[6]  Wen Qiao-Yan,et al.  Cryptanalysis of the arbitrated quantum signature protocols , 2011 .

[7]  Jun Yu Li,et al.  Quantum key distribution scheme with orthogonal product states , 2001, quant-ph/0102060.

[8]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[9]  Tongsong Jiang,et al.  An algebraic method for quaternion and complex Least Squares coneigen-problem in quantum mechanics , 2014, Appl. Math. Comput..

[10]  Zhenfu Cao,et al.  A secure identity-based proxy multi-signature scheme , 2009, Inf. Sci..

[11]  Tzonelih Hwang,et al.  Comment on “Security analysis and improvements of arbitrated quantum signature schemes” , 2011, 1105.1232.

[12]  Fei Gao,et al.  Quantum key agreement with EPR pairs and single-particle measurements , 2013, Quantum Information Processing.

[13]  Yang Yu-Guang Multi-proxy quantum group signature scheme with threshold shared verification , 2008 .

[14]  Pedro J. Salas,et al.  Security of plug-and-play QKD arrangements with finite resources , 2013, Quantum Inf. Comput..

[15]  Qiao-Yan Wen,et al.  Quantum threshold group signature , 2008 .

[16]  Fei Gao,et al.  Local indistinguishability of multipartite orthogonal product bases , 2017, Quantum Information Processing.

[17]  Daowen Qiu,et al.  Security analysis and improvements of arbitrated quantum signature schemes , 2010 .

[18]  Yujun Cui,et al.  An existence and uniqueness theorem for a second order nonlinear system with coupled integral boundary value conditions , 2015, Appl. Math. Comput..

[19]  Tzonelih Hwang,et al.  On “Arbitrated quantum signature of classical messages against collective amplitude damping noise” , 2011 .

[20]  Tian-Yin Wang,et al.  Cryptanalysis and improvement of a multi-user quantum key distribution protocol , 2010 .

[21]  M. Mambo,et al.  Proxy Signatures: Delegation of the Power to Sign Messages (Special Section on Information Theory and Its Applications) , 1996 .

[22]  Yuan Tian,et al.  A group signature scheme based on quantum teleportation , 2010 .

[23]  Olivier Markowitch,et al.  A NOTE ON AN ARBITRATED QUANTUM SIGNATURE SCHEME , 2009 .

[24]  Xin-zhu Meng,et al.  Adaptive dynamics analysis of a predator-prey model with selective disturbance , 2015, Appl. Math. Comput..

[25]  Yu-Guang Yang,et al.  Arbitrated quantum signature scheme based on cluster states , 2016, Quantum Inf. Process..

[26]  Su-Juan Qin,et al.  Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system , 2015, Scientific Reports.

[27]  Yanhui Wang,et al.  Beyond regular semigroups , 2016 .

[28]  Yongli Wang,et al.  A decomposition method for large-scale box constrained optimization , 2014, Appl. Math. Comput..

[29]  Yu-Guang Yang,et al.  Erratum: Arbitrated quantum signature of classical messages against collective amplitude damping noise (Opt. Commun. 283 (2010) 3198–3201) , 2010 .

[30]  Tonghua Zhang,et al.  GLOBAL ANALYSIS FOR A DELAYED SIV MODEL WITH DIRECT AND ENVIRONMENTAL TRANSMISSIONS , 2015 .

[31]  Xinzhu Meng,et al.  Dynamical Analysis of SIR Epidemic Model with Nonlinear Pulse Vaccination and Lifelong Immunity , 2015 .

[32]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[33]  Qing-yu Cai,et al.  Photon-number-resolving decoy-state quantum key distribution , 2006 .

[34]  Liusheng Huang,et al.  Quantum group blind signature scheme without entanglement , 2011 .

[35]  Fei Gao,et al.  Local indistinguishability of orthogonal product states , 2015, 1509.01814.

[36]  YeFeng He,et al.  Quantum key agreement protocols with four-qubit cluster states , 2015, Quantum Inf. Process..

[37]  Xunru Yin,et al.  A Blind Quantum Signature Scheme with χ-type Entangled States , 2012 .

[38]  Zhigang Chen,et al.  A Weak Quantum Blind Signature with Entanglement Permutation , 2015 .

[39]  N. Lutkenhaus,et al.  Comment on ``Arbitrated quantum-signature scheme'' , 2008, 0806.0854.

[40]  Guihua Zeng Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ” , 2008 .

[41]  Yuan Tian,et al.  A weak blind signature scheme based on quantum cryptography , 2009 .

[42]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[43]  L. Hardy,et al.  Nonlocality, asymmetry, and distinguishing bipartite states. , 2002, Physical review letters.

[44]  Wang Tian-yin,et al.  Fair quantum blind signatures , 2010 .

[45]  Ying Guo,et al.  Batch proxy quantum blind signature scheme , 2011, Science China Information Sciences.

[46]  Zhu-Jun Zheng,et al.  Nonlocality of orthogonal product basis quantum states , 2014, 1509.06927.

[47]  Gang Xu,et al.  Cryptanalysis of secret sharing with a single d-level quantum system , 2018, Quantum Inf. Process..

[48]  Tian-Yin Wang,et al.  One-time proxy signature based on quantum cryptography , 2012, Quantum Inf. Process..

[49]  Xinzhu Meng,et al.  Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment , 2016 .